Desaturase; Functional characterisation; Heterologous expression; Integrated pest management; Lepidoptera; Transcriptome; Insect Science; Agronomy and Crop Science; General Medicine
Abstract :
[en] [en] BACKGROUND: The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available.
RESULTS: Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast.
CONCLUSION: Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species.
Disciplines :
Entomology & pest control
Author, co-author :
Dam, Marie Inger ; Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
Ding, Bao-Jian; Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
Svensson, Glenn P; Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
Wang, Hong-Lei; Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
Melo, Douglas J; Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden ; Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba, PR, Brazil
Lassance, Jean-Marc ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Zarbin, Paulo H G; Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba, PR, Brazil
Löfstedt, Christer; Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
Language :
English
Title :
Sex pheromone biosynthesis in the sugarcane borer Diatraea saccharalis: paving the way for biotechnological production.
Francischini FJB, Cordeiro EMG, de Campos JB, Alves-Pereira A, Viana JPG, Wu X et al., Diatraea saccharalis history of colonization in the Americas. The case for human-mediated dispersal. PLoS One 14:e0220031 (2019).
Roe RM, Hammond AM Jr, Reagan TE and Hensley SD, A Bibliography of the Sugarcane Borer, Diatraea Saccharalis (Fabricius), 1887–1980. U.S. Department of Agriculture Agricultural Reviews and Manuals, New Orleans (1981).
Grimi DA, Parody B, Ramos ML, Machado M, Ocampo F, Willse A et al., Field-evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina. Pest Manage Sci 74:905–913 (2018).
Goebel F-R and Sallam N, New pest threats for sugarcane in the new bioeconomy and how to manage them. Curr Opin Environ Sustain 3:81–89 (2011).
de S. Rossato Jr JA, Costa GH, Madaleno LL, Mutton MJ, Higley LG and Fernandes OA, Characterization and impact of the sugarcane borer on sugarcane yield and quality. Agron J 105:643–648 (2013).
Oliveira C, Auad A, Mendes S and Frizzas M, Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54 (2014).
FAOSTAT. Sugarcane Crop Statistics 2019: Food and Agriculture Organization of the United Nations (FAO); 2021 http://www.fao.org/faostat/en/#data/QC.
Batista-Pereira LG, Santangelo EM, Stein K, Unelius CR, Eiras AE and Correa AG, Electrophysiological studies and identification of possible sex pheromone components of Brazilian populations of the sugarcane borer, Diatraea saccharalis. Z Naturforsch 57:753–758 (2002).
US-EPA. Introduction to Integrated Pest Management: United States Environmental Protection Agency; 2017 https://www.epa.gov/ipm/introduction-integrated-pest-management.
Parra JRP, Biological control in Brazil: an overview. Sci Agric 71:420–429 (2014).
Parra JRP, Botelho PSM and Pinto AdS, Biological control of pests as a key component for sustainable sugarcane production, in Sugarcane Bioethanol- R&D for Productivity and Sustainability, ed. by Cortez LAB, Blucher, São Paulo. SP, Brazil, pp. 441–450 (2010).
Witzgall P, Kirsch P and Cork A, Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100 (2010).
Carney RL and Liu ST, inventorsZoecon corporation, Palo Alto, California, assignee. Insect pheromone (1982).
Hammond A and Fisher N, Abstract: the sex pheromone of the sugar cane borer, Diatraea saccharalis (F.), and its potential as a management tool. Sugar y Azucar 77:32 (1982).
Svatoš A, Kalinová B, Kindl J, Kuldová J, Hovorka O, Do Nascimento RR et al., Chemical characterization and synthesis of the major component of the sex pheromone of the sugarcane borer Diatraea saccharalis. Collect Czechoslov Chem Commun 66:1682–1690 (2001).
Kalinová B, Kindl J, Hovorka O, Hoskovec M and Svatos A, (11Z)-hexadec-11-enal enhances the attractiveness of Diatraea saccharalis main pheromone component in wind tunnel experiments. J Appl Entomol 129:70–74 (2005).
da Silva MR, Cortés AMP, Svensson GP, Löfstedt C, Lima ER and Zarbin PHG, Identification of two additional behaviorally active gland constituents of female Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae). J Braz Chem Soc 32:225–230 (2021).
Löfstedt C and Xia Y-H, Biological production of insect pheromones in cell and plant factories, in Insect Pheromone Biochemistry and Molecular Biology, Second edn, ed. by Blomquist GJ and Vogt RG. Academic Press, London, pp. 89–121 (2021. Chapter 3).
Wang H-L, Ding B-J, Dai J-Q, Nazarenus TJ, Borges R, Mafra-Neto A et al., Insect pest management with sex pheromone precursors from engineered oilseed plants. Nat Sustainability 5:981-90 (2022).
Ding B-J, Hofvander P, Wang H-L, Durrett TP, Stymne S and Löfstedt C, A plant factory for moth pheromone production. Nat Commun 5:1–7 (2014).
Hagström ÅK, Wang H-L, Liénard MA, Lassance J-M, Johansson T and Löfstedt C, A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory. Microb Cell Fact 12:125 (2013).
Holkenbrink C, Ding B-J, Wang H-L, Dam MI, Petkevicius K, Kildegaard KR et al., Production of moth sex pheromones for pest control by yeast fermentation. Metab Eng 62:312–321 (2020).
Liénard MA, Strandh M, Hedenstrom E, Johansson T and Löfstedt C, Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol Biol 8:270 (2008).
Liu W, Jiao H, Murray NC, O'Connor M and Roelofs WL, Gene characterized for membrane desaturase that produces (E)-11 isomers of mono- and diunsaturated fatty acids. Proc Natl Acad Sci 99:620–624 (2002).
Xia Y-H, Zhang Y-N, Ding B-J, Wang H-L and Löfstedt C, Multi-functional desaturases in two Spodoptera moths with ∆11 and ∆12 desaturation activities. J Chem Ecol 45:378–387 (2019).
Löfstedt C and Bengtsson M, Sex pheromone biosynthesis of (E,E)-8,10-dodecadienol in codling moth Cydia pomonella involves E9 desaturation. J Chem Ecol 14:903–915 (1988).
Moto K, Suzuki MG, Hull JJ, Kurata R, Takahashi S, Yamamoto M et al., Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci 101:8631–8636 (2004).
Lassance J-M, Ding B-J and Löfstedt C, Evolution of the codling moth pheromone via an ancient gene duplication. BMC Biol 19:83 (2021).
Yamaoka R, Taniguchi Y and Hayashiya K, Bombykol biosynthesis from deuterium-labeled (Z)-11-hexadecenoic acid. Experientia 40:80–81 (1984).
Liénard MA, Lassance JM, Wang H-L, Zhao CH, Piskur J, Johansson T et al., Elucidation of the sex-pheromone biosynthesis producing 5,7-dodecadienes in Dendrolimus punctatus (Lepidoptera: Lasiocampidae) reveals Delta 11- and Delta 9-desaturases with unusual catalytic properties. Insect Biochem Mol Biol 40:440–452 (2010).
Ding B-J, Xia Y, Wang H-L, Andersson F, Hedenström E, Gross J et al., Biosynthesis of the Sex Pheromone Component (E,Z)-7,9-Dodecadienyl Acetate in the European Grapevine Moth, Lobesia botrana, Involving Δ11 Desaturation and an Elusive Δ7 Desaturase. J Chem Ecol 47:248–264 (2021).
Corey E and Schmidt G, Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Lett 20:399–402 (1979).
Bjostad LB and Roelofs WL, Sex pheromone biosynthetic precursors in Bombyx mori. Insect Biochem 14:275–278 (1984).
Corso TN, Lewis BA and Brenna JT, Reduction of fatty acid methyl esters to fatty alcohols to improve volatility for isotopic analysis without extraneous carbon. Anal Chem 70:3752–3756 (1998).
Löfstedt C, Hansson BS, Tòth M, Szöcs G, Buda V, Bengtsson M et al., Pheromone differences between sibling taxa Diachrysia chrysitis (Linnaeus, 1758) and D. tutti (Kostrowicki, 1961) (Lepidoptera: Noctuidae). J Chem Ecol 20:91–109 (1994).
Zarbin PH, Lorini LM, Ambrogi BG, Vidal DM and Lima ER, Sex pheromone of Lonomia obliqua: daily rhythm of production, identification, and synthesis. J Chem Ecol 33:555–565 (2007).
Jurenka R, Regulation of pheromone biosynthesis in moths. Curr Opin Insect Sci 24:29–35 (2017).
Buser HR, Arn H, Guerin P and Rauscher S, Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822 (1983).
Bolger AM, Lohse M and Usadel B, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120 (2014).
Schmieder R and Edwards R, Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864 (2011).
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al., Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–U130 (2011).
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al., De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512 (2013).
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV and Zdobnov EM, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212 (2015).
Li B and Dewey CN, RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinf 12:323 (2011).
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer ELL et al., Pfam: the protein families database in 2021. Nucleic Acids Res 49:D412–D419 (2020).
Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ, Basic local alignment search tool. J Mol Biol 215:403–410 (1990).
Katoh K, Misawa K, Ki K and Miyata T, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 (2002).
Nguyen L-T, Schmidt HA, von Haeseler A and Minh BQ, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274 (2014).
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A and Jermiin LS, ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589 (2017).
Hoang DT, Chernomor O, von Haeseler A, Minh BQ and Vinh LS, UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522 (2017).
Yu G, Smith DK, Zhu H, Guan Y and Lam TT-Y, GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36 (2017).
Patel O, Satchell J, Baell J, Fernley R, Coloe P and Macreadie I, Inhibition studies of sulfonamide-containing folate analogs in yeast. Microb Drug Resist 9:139–146 (2003).
Schneiter R, Tatzer V, Gogg G, Leitner E and Kohlwein SD, Elo1p-dependent carboxy-terminal elongation of C14:1Delta(9) to C16:1Delta(11) fatty acids in Saccharomyces cerevisiae. J Bacteriol 182:3655–3660 (2000).
Xia Y-H, Ding B-J, Dong S-L, Wang H-L, Hofvander P and Löfstedt C, Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes. BMC Biol 20:80 (2022).
Rajangam AS, Gidda SK, Craddock C, Mullen RT, Dyer JM and Eastmond PJ, Molecular characterization of the fatty alcohol oxidation pathway for wax-ester mobilization in germinated jojoba seeds. Plant Physiol 161:72–80 (2012).
Borges dos Santos L, Paulo Gomes Viana J, José Biasotto Francischini F, Victoria Fogliata S, L. Joyce A, de Souza AP et al., A first draft genome of the sugarcane borer, Diatraea saccharalis. [version 1; peer review: 1 approved with reservations]. F1000Research 9:1269 (2020).
Koussounadis A, Langdon SP, Um IH, Harrison DJ and Smith VA, Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5:10775 (2015).
Strandh M, Johansson T, Ahrén D and Löfstedt C, Transcriptional analysis of the pheromone gland of the turnip moth, Agrotis segetum (Noctuidae), reveals candidate genes involved in pheromone production. Insect Mol Biol 17:73–85 (2008).
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA et al., Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 16:532 (2015).
Zhang S, Liu X, Zhu B, Yin X, Du M, Song Q et al., Identification of differentially expressed genes in the pheromone glands of mated and virgin Bombyx mori by digital gene expression profiling. PLoS One 9:e111003 (2014).
Liénard MA, Wang H-L, Lassance J-M and Löfstedt C, Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat Commun 5:3957 (2014).
Razo-Mendivil FG, Martínez O and Hayano-Kanashiro C, Compacta: a fast contig clustering tool for de novo assembled transcriptomes. BMC Genomics 21:148 (2020).
Gruenheit N, Deusch O, Esser C, Becker M, Voelckel C and Lockhart P, Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants. BMC Genomics 13:92 (2012).
Lassance JM, Groot AT, Liénard MA, Antony B, Borgwardt C, Andersson F et al., Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:486–489 (2010).
Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG et al., X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524:252–256 (2015).
Petkevicius K, Koutsoumpeli E, Betsi PC, Ding B-J, Kildegaard KR, Jensen H et al., Biotechnological production of the European corn borer sex pheromone in the yeast Yarrowia lipolytica. Biotechnol J 16:2100004 (2021).
Xia Y-H, Ding B-J, Wang H-L, Hofvander P, Jarl-Sunesson C and Löfstedt C, Production of moth sex pheromone precursors in Nicotiana spp.: a worthwhile new approach to pest control. J Pest Sci 93:1333–1346 (2020).
Hayes DG, Bengtsson YC, Van Alstine JM and Setterwall F, Urea complexation for the rapid, ecologically responsible fractionation of fatty acids from seed oil. J Am Oil Chem Soc 75:1403–1409 (1998).
Wang F-M, Shen Z-J, Schal C, Zhu JJ, Zhou G-X, Wang Y-L et al., Pheromone antagonism in Plutella xylostella (Linnaeus) by sex pheromones of two sympatric noctuid moths. Pest Manage Sci 78:379–387 (2022).
Juárez ML, Ruiz MJ, Fernández PC, Goane L, Villagrán ME, Arce OEA et al., Communication interference in sympatrically occurring moth species. Entomol Exp Appl 158:25–33 (2016).
Eizaguirre M, Albajes R, López C, Sans A and Gemeno C, Inhibition of pheromone response in Sesamia nonagrioides by the pheromone of the sympatric corn borer, Ostrinia nubilalis. Pest Manage Sci 63:608–614 (2007).
Witzgall P, Bäckman A-C, Svensson M, Koch U, Rama F, El-Sayed A et al., Behavioral observations of codling moth, Cydia pomonella, in orchards permeated with synthetic pheromone. BioControl 44:211–237 (1999).
Xia Y-H, Wang H-L, Ding B-J, Svensson GP, Jarl-Sunesson C, Cahoon EB et al., Green chemistry production of Codlemone, the sex pheromone of the codling moth (Cydia pomonella), by metabolic engineering of the oilseed crop camelina (Camelina sativa). J Chem Ecol 47:950–967 (2021).
Hammond AM and Hensley SD, The sugarcane borer sex attractant. Entomophaga 16:159–164 (1971).
Meier LR, Zou Y, Millar JG, Mongold-Diers JA and Hanks LM, Synergism between enantiomers creates species-specific pheromone blends and minimizes cross-attraction for two species of cerambycid beetles. J Chem Ecol 42:1181–1192 (2016).
Hall DR, Farman D, Domínguez JC and Pajares JA, Female sex pheromone of the cone moth, Dioryctria mendacella: investigation of synergism between type I and type II pheromone components. J Chem Ecol 43:433–442 (2017).
Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P and Lucchi A, Chemical ecology and management of Lobesia botrana (lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137 (2011).
Dias HB and Sentelhas PC, Sugarcane yield gap analysis in Brazil – a multi-model approach for determining magnitudes and causes. Sci Total Environ 637-638:1127–1136 (2018).
da Cunha Borges Filho R, Sturza VS, Bernardi D, da Cunha US, Pinto AS, dos Anjos e. Silva SD et al., Population dynamics of pests and natural enemies on sugar cane grown in a subtropical region of Brazil. Fla Entomol 102:526–530 (2019).
Knipple DC, Rosenfield C-L, Nielsen R, You KM and Jeong SE, Evolution of the integral membrane desaturase gene family in moths and flies. Genetics 162:1737–1752 (2002).