[en] Medical image analysis plays a key role in precision medicine. Data curation and pre-processing are critical steps in quantitative medical image analysis that can have a significant impact on the resulting performance of machine learning models. In this work, we introduce the Precision-medicine-toolbox, allowing clinical and junior researchers to perform data curation, image pre-processing, radiomics extraction, and feature exploration tasks with a customizable Python package. With this open-source tool, we aim to facilitate the crucial data preparation and exploration steps, bridge the gap between the currently existing packages, and improve the reproducibility of quantitative medical imaging research.
Disciplines :
Computer science
Author, co-author :
Lavrova, Elizaveta ; Université de Liège - ULiège > GIGA ; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
Primakov, Sergey; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
Salahuddin, Zohaib; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
Beuque, Manon; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
Verstappen, Damon; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
Woodruff, Henry C.; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands ; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
Lambin, Philippe; The D-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands ; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
Language :
English
Title :
Precision-medicine-toolbox: An open-source python package for the quantitative medical image analysis[Formula presented]
The authors would like to thank the Precision Medicine department colleagues and external users for the feedback, Mart Smidt for testing the tool on the different data, PyRadiomics for a reliable open-source tool for features extraction, Hugo Aerts et al. for the Lung1 dataset we used to demonstrate our functionality, and The Cancer Imaging Archive for the publically available data.
Niu, T., Sun, X., Yang, P., Cao, G., Tha, K.K., Shirato, H., Horst, K., Xing, L., Pathways to radiomics-aided clinical decision-making for precision medicine. Radiomics and Radiogenomics, 2019, Chapman and Hall/CRC, 193–201.
Acharya, U.R., Hagiwara, Y., Sudarshan, V.K., Chan, W.Y., Ng, K.H., Towards precision medicine: from quantitative imaging to radiomics. J. Zhejiang Univ. Sci. B 19:1 (2018), 6–24.
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., Zegers, C.M.L., Gillies, R., Boellard, R., Dekker, A., Aerts, H.J.W.L., Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48:4 (2012), 441–446.
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
Oren, O., Gersh, B.J., Bhatt, D.L., Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit Health 2:9 (2020), e486–e488.
Aggarwal, R., Sounderajah, V., Martin, G., Ting, D.S.W., Karthikesalingam, A., King, D., Ashrafian, H., Darzi, A., Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit Med., 4(1), 2021, 65.
Zhou, S.K., Greenspan, H., Davatzikos, C., Duncan, J.S., Van Ginneken, B., Madabhushi, A., Prince, J.L., Rueckert, D., Summers, R.M., A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE Inst. Electr. Electron. Eng. 109:5 (2021), 820–838.
Tagliafico, A.S., Piana, M., Schenone, D., Lai, R., Massone, A.M., Houssami, N., Overview of radiomics in breast cancer diagnosis and prognostication. Breast 49 (2020), 74–80.
Mu, W., Jiang, L., Zhang, J., Shi, Y., Gray, J.E., Tunali, I., Gao, C., Sun, Y., Tian, J., Zhao, X., Sun, X., Gillies, R.J., Schabath, M.B., Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nature Commun., 11(1), 2020, 5228.
Zhang, Y., Oikonomou, A., Wong, A., Haider, M.A., Khalvati, F., Radiomics-based prognosis analysis for Non-Small cell lung cancer. Sci. Rep., 7, 2017, 46349.
Wang, S., Xiao, F., Sun, W., Yang, C., Ma, C., Huang, Y., Xu, D., Li, L., Chen, J., Li, H., Xu, H., Radiomics analysis based on magnetic resonance imaging for preoperative overall survival prediction in isocitrate dehydrogenase Wild-Type glioblastoma. Front. Neurosci., 15, 2021, 791776.
van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R.G.H., Fillion-Robin, J.-C., Pieper, S., Aerts, H.J.W.L., Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77:21 (2017), e104–e107.
Fave, X., Zhang, L., Yang, J., Mackin, D., Balter, P., Gomez, D., Followill, D., Jones, A.K., Stingo, F., Court, L.E., Impact of image preprocessing on the volume dependence and prognostic potential of radiomics features in non-small cell lung cancer. Transl. Cancer Res. 5:4 (2016), 349–363.
Zhang, R., Zhu, L., Cai, Z., Jiang, W., Li, J., Yang, C., Yu, C., Jiang, B., Wang, W., Xu, W., Chai, X., Zhang, X., Tang, Y., Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions. Eur. J. Radiol., 121, 2019, 108735.
Hosseini, S.A., Shiri, I., Hajianfar, G., Ghafarian, P., Karam, M.B., Ay, M.R., The impact of preprocessing on the PET-CT radiomics features in non-small cell lung cancer. Front. Biomed. Technol., 2021.
van der Walt, S., Colbert, S.C., Varoquaux, G., The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 13:2 (2011), 22–30.
McKinney, W., Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference, 2010, SciPy.
Mason, D., SU-E-T-33: Pydicom: An open source DICOM library. Med. Phys., 38(6Part10), 2011, 3493.
van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T., scikit-image contributors, W., Scikit-image: image processing in Python. PeerJ, 2, 2014, e453.
Kramer, O., Scikit-Learn. Kramer, O., (eds.) Machine Learning for Evolution Strategies, 2016, Springer International Publishing, Cham, 45–53.
Yaniv, Z., Lowekamp, B.C., Johnson, H.J., Beare, R., SimpleITK Image-Analysis notebooks: a collaborative environment for education and reproducible research. J. Digit. Imaging 31:3 (2018), 290–303.
Brett, M., Hanke, M., Markiewicz, C., Côté, M., McCarthy, P., Ghosh, S., Wassermann, D., Gerhard, S., Halchenko, Y., Larson, E., et al. Nipy/nibabel: 3.2.1. 2020.
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17:3 (2020), 261–272.
Gorgolewski, K., Burns, C.D., Madison, C., Clark, D., Halchenko, Y.O., Waskom, M.L., Ghosh, S.S., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform., 2011, 13.
Jungo, A., Scheidegger, O., Reyes, M., Balsiger, F., Pymia: A Python package for data handling and evaluation in deep learning-based medical image analysis. Comput. Methods Programs Biomed., 198, 2021, 105796.
Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., Yang, D., et al. MONAI: An open-source framework for deep learning in healthcare. 2022 arXiv preprint arXiv:2211.02701.
Primakov, S.P., Ibrahim, A., van Timmeren, J.E., Wu, G., Keek, S.A., Beuque, M., Granzier, R.W., Lavrova, E., Scrivener, M., Sanduleanu, S., et al. Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nature Commun. 13:1 (2022), 1–12.
Granzier, R.W., Ibrahim, A., Primakov, S., Keek, S.A., Halilaj, I., Zwanenburg, A., Engelen, S.M., Lobbes, M.B., Lambin, P., Woodruff, H., et al. Test–retest data for the assessment of breast MRI radiomic feature repeatability. J. Magn. Resonance Imaging 56:2 (2022), 592–604.
Lavrova, E., Lommers, E., Woodruff, H.C., Chatterjee, A., Maquet, P., Salmon, E., Lambin, P., Phillips, C., Exploratory radiomic analysis of conventional vs. quantitative brain MRI: Toward automatic diagnosis of early multiple sclerosis. Front. Neurosci., 2021, 838.