Bidispersity; Disorder degree; Large particles; Magnet particles; Magnetic dipole-dipole interaction; Many-particle systems; Small particles; Standard deviation; Two-dimensional magnet; Voronoi cell; Physics and Astronomy (all); Physical and Theoretical Chemistry; Physics - Soft Condensed Matter; General Physics and Astronomy
Abstract :
[en] In various types of many-particle systems, bidispersity is frequently used to avoid spontaneous ordering in particle configurations. In this study, the relation between bidispersity and disorder degree of particle configurations is investigated. By using magnetic dipole-dipole interaction, magnet particles are dispersed in a two-dimensional cell without any physical contact between them. In this magnetic system, bidispersity is introduced by mixing large and small magnets. Then, the particle system is compressed to produce a uniform particle configuration. The compressed particle configuration is analyzed by using Voronoi tessellation for evaluating the disorder degree, which strongly depends on bidispersity. Specifically, the standard deviation and skewness of the Voronoi cell area distribution are measured. As a result, we find that the peak of standard deviation is observed when the numbers of large and small particles are almost identical. Although the skewness shows a non-monotonic behavior, a zero skewness state (symmetric distribution) can be achieved when the numbers of large and small particles are identical. In this ideally random (disordered) state, the ratio between pentagonal, hexagonal, and heptagonal Voronoi cells becomes roughly identical, while hexagons are dominant under monodisperse (ordered) conditions. The relation between Voronoi cell analysis and the global bond orientational order parameter is also discussed.
Disciplines :
Physics
Author, co-author :
Tsuchikusa, K; Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
Yamamoto, K ; Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan ; Water Frontier Research Center (WaTUS), Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
Katsura, M; Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
de Paula, C T ; Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
Modesto, J A C ; Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
Dorbolo, Stéphane ; Université de Liège - ULiège > Département de physique > Physique statistique
Pacheco-Vázquez, F ; Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, Mexico
Sobral, Y D ; Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
Katsuragi, H ; Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
Language :
English
Title :
Disordering two-dimensional magnet-particle configurations using bidispersity.
JSPS - Japan Society for the Promotion of Science FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture FAPDF - Fundação de Apoio à Pesquisa do Distrito Federal
Funding text :
This work was partially supported by JSPS KAKENHI Grant Nos. 18H03679 and 23H04134. S.D. acknowledges F.R.S.-FNRS for the financial support as a senior research associate. Y.D.S. acknowledges FAP-DF Project No. 00193-00001155/2021-40 for the financial support.
N. Iikawa, M. M. Bandi, and H. Katsuragi, “ Sensitivity of granular force chain orientation to disorder-induced metastable relaxation,” Phys. Rev. Lett. 116, 128001 ( 2016). 10.1103/physrevlett.116.128001
A. Reinhardt, J. S. Schreck, F. Romano, and J. P. K. Doye, “ Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal,” J. Phys.: Condens. Matter 29, 014006 ( 2017); arXiv:1607.06626. 10.1088/0953-8984/29/1/014006
E. Fayen, A. Jagannathan, G. Foffi, and F. Smallenburg, “ Infinite-pressure phase diagram of binary mixtures of (non)additive hard disks,” J. Chem. Phys. 152, 204901 ( 2020); arXiv:2003.08889. 10.1063/5.0008230
E. Fayen, M. Impéror-Clerc, L. Filion, G. Foffi, and F. Smallenburg, “ Self-assembly of dodecagonal and octagonal quasicrystals in hard spheres on a plane,” Soft Matter 19, 2654- 2663 ( 2023). 10.1039/D3SM00179B
L. Assoud, R. Messina, and H. Löwen, “ Stable crystalline lattices in two-dimensional binary mixtures of dipolar particles,” Europhys. Lett. 80, 48001 ( 2007); arXiv:0706.2311. 10.1209/0295-5075/80/48001
R. Messina and S. Aljawhari, “ Crystallization of binary mixtures of similar dipole moments in two dimensions: A Monte Carlo study,” Europhys. Lett. 115, 28005 ( 2016). 10.1209/0295-5075/115/28005
F. Ebert, P. Keim, and G. Maret, “ Local crystalline order in a 2D colloidal glass former,” Eur. Phys. J. E 26, 161- 168 ( 2008). 10.1140/epje/i2007-10270-8
J. Fornleitner, F. Lo Verso, G. Kahl, and C. N. Likos, “ Genetic algorithms predict formation of exotic ordered configurations for two-component dipolar monolayers,” Soft Matter 4, 480- 484 ( 2008). 10.1039/b717205b
J. Fornleitner, F. Lo Verso, G. Kahl, and C. N. Likos, “ Ordering in two-dimensional dipolar mixtures,” Langmuir 25, 7836- 7846 ( 2009). 10.1021/la900421v
J. Schockmel, “ Self-organization of a monolayer of magnetized beads,” Ph.D. thesis, Université de Liège, 2019.
F. Ebert, G. Maret, and P. Keim, “ Partial clustering prevents global crystallization in a binary 2D colloidal glass former,” Eur. Phys. J. E 29, 311- 318 ( 2009); arXiv:0903.2812. 10.1140/epje/i2009-10490-x
L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, and H. Löwen, “ Ultrafast quenching of binary colloidal suspensions in an external magnetic field,” Phys. Rev. Lett. 102, 238301 ( 2009); arXiv:0811.1498. 10.1103/physrevlett.102.238301
K. J. Strandburg, “ Two-dimensional melting,” Rev. Mod. Phys. 60, 161- 207 ( 1988). 10.1103/revmodphys.60.161
U. Gasser, C. Eisenmann, G. Maret, and P. Keim, “ Melting of crystals in two dimensions,” ChemPhysChem 11, 963- 970 ( 2010). 10.1002/cphc.200900755
J. Schockmel, E. Mersch, N. Vandewalle, and G. Lumay, “ Melting of a confined monolayer of magnetized beads,” Phys. Rev. E 87, 062201 ( 2013). 10.1103/PhysRevE.87.062201
R. Messina, S. Aljawhari, L. Bécu, J. Schockmel, G. Lumay, and N. Vandewalle, “ Quantitatively mimicking wet colloidal suspensions with dry granular media,” Sci. Rep. 5, 10348 ( 2015). 10.1038/srep10348
J. Schockmel, N. Vandewalle, E. Opsomer, and G. Lumay, “ Frustrated crystallization of a monolayer of magnetized beads under geometrical confinement,” Phys. Rev. E 95, 062120 ( 2017). 10.1103/PhysRevE.95.062120
E. Opsomer, S. Merminod, J. Schockmel, N. Vandewalle, M. Berhanu, and E. Falcon, “ Patterns in magnetic granular media at the crossover from two to three dimensions,” Phys. Rev. E 102, 042907 ( 2020). 10.1103/PhysRevE.102.042907
K. Zahn, R. Lenke, and G. Maret, “ Two-stage melting of paramagnetic colloidal crystals in two dimensions,” Phys. Rev. Lett. 82, 2721- 2724 ( 1999). 10.1103/PhysRevLett.82.2721
N. Gribova, A. Arnold, T. Schilling, and C. Holm, “ How close to two dimensions does a Lennard-Jones system need to be to produce a hexatic phase?,” J. Chem. Phys. 135, 054514 ( 2011); arXiv:1104.0611. 10.1063/1.3623783
Y. Komatsu and H. Tanaka, “ Roles of energy dissipation in a liquid-solid transition of out-of-equilibrium systems,” Phys. Rev. X 5, 031025 ( 2015); arXiv:1509.03435. 10.1103/physrevx.5.031025
P. M. Reis, R. A. Ingale, and M. D. Shattuck, “ Crystallization of a quasi-two-dimensional granular fluid,” Phys. Rev. Lett. 96, 258001 ( 2006); arXiv:cond-mat/0603408. 10.1103/physrevlett.96.258001
R. P. Behringer and B. Chakraborty, “ The physics of jamming for granular materials: A review,” Rep. Prog. Phys. 82, 012601 ( 2018). 10.1088/1361-6633/aadc3c
D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, “ Motility-driven glass and jamming transitions in biological tissues,” Phys. Rev. X 6, 021011 ( 2016); arXiv:1509.06578. 10.1103/PhysRevX.6.021011
G. Lumay, J. Schockmel, D. Henández-Enríquez, S. Dorbolo, N. Vandewalle, and F. Pacheco-Vázquez, “ Flow of magnetic repelling grains in a two-dimensional silo,” Pap. Phys. 7, 070013 ( 2015). 10.4279/pip.070013
D. Hernández-Enríquez, G. Lumay, and F. Pacheco-Vázquez, “ Discharge of repulsive grains from a silo: Experiments and simulations,” EPJ Web Conf. 140, 03089 ( 2017). 10.1051/epjconf/201714003089
Y. Y. Escobar-Ortega, S. Hidalgo-Caballero, J. O. Marston, and F. Pacheco-Vázquez, “ The viscoelastic-like response of a repulsive granular medium during projectile impact and penetration,” J. Non-Newtonian Fluid Mech. 280, 104295 ( 2020). 10.1016/j.jnnfm.2020.104295
J. A. C. Modesto, S. Dorbolo, H. Katsuragi, F. Pacheco-Vázquez, and Y. D. Sobral, “ Experimental and numerical investigation of the compression and expansion of a granular bed of repelling magnetic disks,” Granular Matter 24, 105 ( 2022). 10.1007/s10035-022-01268-w
Q. Yu, A. S. Ahmad, K. Ståhl, X. D. Wang, Y. Su, K. Glazyrin, H. P. Liermann, H. Franz, Q. P. Cao, D. X. Zhang, and J. Z. Jiang, “ Pressure-induced structural change in liquid GaIn eutectic alloy,” Sci. Rep. 7, 1139 ( 2017). 10.1038/s41598-017-01233-1
J. L. Finney, “ Modelling the structures of amorphous metals and alloys,” Nature 266, 309- 314 ( 1977). 10.1038/266309a0
J. L. Finney and J. D. Bernal, “ Random packings and the structure of simple liquids. I. The geometry of random close packing,” Proc. R. Soc. London, Ser. A 319, 479- 493 ( 1970). 10.1098/rspa.1970.0189