[en] [en] BACKGROUND: Young autosomal dominant polycystic kidney disease (ADPKD) patients are becoming the new target population for the development of new treatment options. Determination of a reliable equation for estimated glomerular filtration rate (eGFR) from early stages is needed with the promising potential interventional therapies.
METHODS: Prospective and longitudinal study on a cohort of 68 genotyped ADPKD patients (age range 0-23 years) with long-term follow-up. Commonly used equations for eGFR were compared for their relative performance.
RESULTS: The revised Schwartz formula (CKiD) showed a highly significant decline in eGFR with aging (- 3.31 mL/min/1.73 m2/year, P < 0.0001). The recently updated equation by the Schwartz group (CKiDU25) showed a smaller (- 0.90 mL/min/1.73 m2/year) but significant (P = 0.001) decline in eGFR with aging and also showed a significant sex difference (P < 0.0001), not observed by the other equations. In contrast, the full age spectrum (FAS) equations (FAS-SCr, FAS-CysC, and the combined) showed no age and sex dependency. The prevalence of hyperfiltration is highly dependent on the formula used, and the highest prevalence was observed with the CKiD Equation (35%).
CONCLUSIONS: The most widely used methods to calculate eGFR in ADPKD children (CKiD and CKiDU25 equations) were associated with unexpected age or sex differences. The FAS equations were age- and sex-independent in our cohort. Hence, the switch from the CKiD to CKD-EPI equation at the transition from pediatric to adult care causes implausible jumps in eGFR, which could be misinterpreted. Having reliable methods to calculate eGFR is indispensable for clinical follow-up and clinical trials. A higher resolution version of the Graphical abstract is available as Supplementary information.
Disciplines :
Urology & nephrology Pediatrics
Author, co-author :
Schellekens, Pieter; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium ; Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Louvain, Belgium ; Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Louvain, Belgium
Verjans, Marcelien; Department of Pediatric Nephrology, University Hospitals Leuven, Louvain, Belgium
Janssens, Peter; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium ; Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
Dachy, Angélique ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pédiatrie ; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium ; Department of Pediatrics, U Liège Academic Hospital, Liège, Belgium
De Rechter, Stéphanie; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium ; Department of Pediatric Nephrology, University Hospitals Leuven, Louvain, Belgium
Breysem, Luc; Department of Radiology, University Hospitals Leuven, Louvain, Belgium
Allegaert, Karel; Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Louvain, Belgium ; Woman and Child, Department of Development and Regeneration, KU Leuven, 3000, Louvain, Belgium ; Department of Clinical Pharmacy, Erasmus MC, 3000, CA, Rotterdam, the Netherlands
Bammens, Bert; Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Louvain, Belgium ; Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Louvain, Belgium
Vennekens, Rudi; Department of Cellular and Molecular Medicine, VIB Centre for Brain and Disease Research, Laboratory of Ion Channel Research, KU Leuven, Louvain, Belgium
Vermeersch, Pieter; Department of Laboratory of Laboratory Medicine, University Hospitals Leuven, Louvain, Belgium
Pottel, Hans; Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
Mekahli, Djalila ; PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium. djalila.mekahli@uzleuven.be ; Department of Pediatric Nephrology, University Hospitals Leuven, Louvain, Belgium. djalila.mekahli@uzleuven.be
Language :
English
Title :
Low agreement between various eGFR formulae in pediatric and young adult ADPKD patients.
Publication date :
September 2023
Journal title :
Pediatric Nephrology
ISSN :
0931-041X
eISSN :
1432-198X
Publisher :
Springer Science and Business Media Deutschland GmbH, Germany
Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301. 10.1016/S0140-6736(07)60601-1 DOI: 10.1016/S0140-6736(07)60601-1
Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, Dudley J, Emma F, Konrad M, Harris T, Harris PC, König J, Liebau MC, Marlais M, Mekahli D, Metcalfe AM, Oh J, Perrone RD, Sinha MD, Titieni A, Torra R, Weber S, Winyard PJD, Schaefer F (2019) International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 15:713–726. 10.1038/s41581-019-0155-2 DOI: 10.1038/s41581-019-0155-2
Fick-Brosnahan GM, Tran ZV, Johnson AM, Strain JD, Gabow PA (2001) Progression of autosomal-dominant polycystic kidney disease in children. Kidney Int 59:1654–1662. 10.1046/j.1523-1755.2001.0590051654 DOI: 10.1046/j.1523-1755.2001.0590051654
Massella L, Mekahli D, Paripović D, Prikhodina L, Godefroid N, Niemirska A, Ağbaş A, Kalicka K, Jankauskiene A, Mizerska-Wasiak M, Afonso AC, Salomon R, Deschênes G, Ariceta G, Özçakar ZB, Teixeira A, Duzova A, Harambat J, Seeman T, Hrčková G, Lungu AC, Papizh S, Peco-Antic A, De Rechter S, Giordano U, Kirchner M, Lutz T, Schaefer F, Devuyst O, Wühl E, Emma F (2018) Prevalence of Hypertension in Children with Early-Stage ADPKD. Clin J Am Soc Nephrol 13:874–883. 10.2215/CJN.11401017 DOI: 10.2215/CJN.11401017
Shamshirsaz AA, Reza Bekheirnia M, Kamgar M, Johnson AM, McFann K, Cadnapaphornchai M, Nobakhthaghighi N, Schrier RW (2005) Autosomal-dominant polycystic kidney disease in infancy and childhood: progression and outcome. Kidney Int 68:2218–2224. 10.1111/j.1523-1755.2005.00678.x DOI: 10.1111/j.1523-1755.2005.00678.x
Cadnapaphornchai MA, Masoumi A, Strain JD, McFann K, Schrier RW (2011) Magnetic resonance imaging of kidney and cyst volume in children with ADPKD. Clin J Am Soc Nephrol 6:369–376. 10.2215/CJN.03780410 DOI: 10.2215/CJN.03780410
Yu ASL, Shen C, Landsittel DP, Grantham JJ, Cook LT, Torres VE, Chapman AB, Bae KT, Mrug M, Harris PC, Rahbari-Oskoui FF, Shi T, Bennett WM, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) (2019) Long-term trajectory of kidney function in autosomal-dominant polycystic kidney disease. Kidney Int 95:1253–1261. 10.1016/j.kint.2018.12.023 DOI: 10.1016/j.kint.2018.12.023
Janssens P, Jouret F, Bammens B et al (2020) Implications of early diagnosis of autosomal dominant polycystic kidney disease: A post hoc analysis of the TEMPO 3:4 trial. Sci Rep 10:4294. 10.1038/s41598-020-61303-9 DOI: 10.1038/s41598-020-61303-9
Cornec-Le Gall E, Audrézet MP, Rousseau A, Hourmant M, Renaudineau E, Charasse C, Morin MP, Moal MC, Dantal J, Wehbe B, Perrichot R, Frouget T, Vigneau C, Potier J, Jousset P, Guillodo MP, Siohan P, Terki N, Sawadogo T, Legrand D, Menoyo-Calonge V, Benarbia S, Besnier D, Longuet H, Férec C, Le Meur Y (2016) The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 27:942–951. 10.1681/ASN.2015010016 DOI: 10.1681/ASN.2015010016
De Rechter S, Bammens B, Schaefer F, Liebau MC, Mekahli D (2018) Unmet needs and challenges for follow-up and treatment of autosomal dominant polycystic kidney disease: the paediatric perspective. Clin Kidney J 11:i14–i26. 10.1093/ckj/sfy088 DOI: 10.1093/ckj/sfy088
Helal I, Reed B, McFann K, Yan XD, Fick-Brosnahan GM, Cadnapaphornchai M, Schrier RW (2011) Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6:2439–2443. 10.2215/CJN.01010211 DOI: 10.2215/CJN.01010211
Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H (2015) A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol 10:382–389. 10.2215/CJN.03080314 DOI: 10.2215/CJN.03080314
Soveri I, Berg UB, Björk J, Elinder CG, Grubb A, Mejare I, Sterner G, Bäck SE, SBU GFR Review Group (2014) Measuring GFR: a systematic review. Am J Kidney Dis 64:411–424. 10.1053/j.ajkd.2014.04.010 DOI: 10.1053/j.ajkd.2014.04.010
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. 10.1681/ASN.2008030287 DOI: 10.1681/ASN.2008030287
Pottel H, Björk J, Bökenkamp A, Berg U, Åsling-Monemi K, Selistre L, Dubourg L, Hansson M, Littmann K, Jones I, Sjöström P, Nyman U, Delanaye P (2019) Estimating glomerular filtration rate at the transition from pediatric to adult care. Kidney Int 95:1234–1243. 10.1016/j.kint.2018.12.020 DOI: 10.1016/j.kint.2018.12.020
Pottel H, Björk J, Delanaye P, Nyman U (2022) Evaluation of the creatinine-based chronic kidney disease in children (under 25 years) equation in healthy children and adolescents. Pediatr Nephrol 37:2213–2216. 10.1007/s00467-022-05429-0 DOI: 10.1007/s00467-022-05429-0
Pierce CB, Muñoz A, Ng DK, Warady BA, Furth SL, Schwartz GJ (2021) Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int 99:948–956. 10.1016/j.kint.2020.10.047 DOI: 10.1016/j.kint.2020.10.047
Hoste L, Dubourg L, Selistre L, De Souza VC, Ranchin B, Hadj-Aïssa A, Cochat P, Martens F, Pottel H (2014) A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol Dial Transplant 29:1082–1091. 10.1093/ndt/gft277 DOI: 10.1093/ndt/gft277
Pottel H, Björk J, Courbebaisse M, Couzi L, Ebert N, Eriksen BO, Dalton RN, Dubourg L, Gaillard F, Garrouste C, Grubb A, Jacquemont L, Hansson M, Kamar N, Lamb EJ, Legendre C, Littmann K, Mariat C, Melsom T, Rostaing L, Rule AD, Schaeffner E, Sundin PO, Turner S, Bökenkamp A, Berg U, Åsling-Monemi K, Selistre L, Åkesson A, Larsson A, Nyman U, Delanaye P (2020) Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate: A Cross-sectional Analysis of Pooled Data. Ann Intern Med 174:183–191. 10.7326/M20-4366 DOI: 10.7326/M20-4366
Björk J, Nyman U, Delanaye P, Grubb A, Larsson A, Vranken L, Åkesson A, Pottel H (2020) A novel method for creatinine adjustment makes the revised Lund-Malmö GFR estimating equation applicable in children. Scand J Clin Lab Invest 80:456–463. 10.1080/00365513.2020.1774641 DOI: 10.1080/00365513.2020.1774641
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. 10.7326/0003-4819-150-9-200905050-00006 DOI: 10.7326/0003-4819-150-9-200905050-00006
Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Goffin K, Pauwels S, Mariat C, Flamant M, Ebert N (2017) Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant 32:497–507. 10.1093/ndt/gfw425 DOI: 10.1093/ndt/gfw425
Rodríguez RM, Luis-Lima S, Fernandez JM et al (2022) Estimated GFR in autosomal dominant polycystic kidney disease: errors of an unpredictable method. J Nephrol 35:2109–2118. 10.1007/s40620-022-01286-0 DOI: 10.1007/s40620-022-01286-0
Ziegelasch N, Vogel M, Müller E, Tremel N, Jurkutat A, Löffler M, Terliesner N, Thiery J, Willenberg A, Kiess W, Dittrich K (2019) Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatr Nephrol 34:449–457. 10.1007/s00467-018-4087-z DOI: 10.1007/s00467-018-4087-z
Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Japanese Society for Pediatric Nephrology, the Committee of Measures for Pediatric CKD (2012) Is the new Schwartz equation derived from serum creatinine and body length suitable for evaluation of renal function in Japanese children? Eur J Pediatr 171:1401–1404. 10.1007/s00431-012-1772-y DOI: 10.1007/s00431-012-1772-y
Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, Yata N, Nagai T, Ikezumi Y, Fujita N, Ito S, Iijima K, Kitagawa T (2011) Age, gender, and body length effects on reference serum creatinine levels determined by an enzymatic method in Japanese children: a multicenter study. Clin Exp Nephrol 15:694–699. 10.1007/s10157-011-0452-y DOI: 10.1007/s10157-011-0452-y
Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akioka Y, Kaneko T, Honda M (2014) Creatinine-based equation to estimate the glomerular filtration rate in Japanese children and adolescents with chronic kidney disease. Clin Exp Nephrol 18:626–633. 10.1007/s10157-013-0856-y DOI: 10.1007/s10157-013-0856-y
Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992. 10.1053/j.ajkd.2008.12.034 DOI: 10.1053/j.ajkd.2008.12.034
Uemura O, Yokoyama H, Ishikura K, Gotoh Y, Sato H, Sugiyama H, Honda M, Matsuo S (2017) Performance in adolescents of the two Japanese serum creatinine based estimated glomerular filtration rate equations, for adults and paediatric patients: A study of the Japan Renal Biopsy Registry and Japan Kidney Disease Registry from 2007 to 2013. Nephrology 22:494–497. 10.1111/nep.12982 DOI: 10.1111/nep.12982
Wong H, Vivian L, Weiler G, Filler G (2004) Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis 43:624–628. 10.1053/j.ajkd.2003.12.026 DOI: 10.1053/j.ajkd.2003.12.026
Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G (2022) Glomerular hyperfiltration. Nat Rev Nephrol 18:435–451. 10.1038/s41581-022-00559-y DOI: 10.1038/s41581-022-00559-y
Pottel H, Adebayo OC, Nkoy AB, Delanaye P (2022) Glomerular hyperfiltration: part 1 - defining the threshold - is the sky the limit? Pediatr Nephrol. 10.1007/s00467-022-05827-4 DOI: 10.1007/s00467-022-05827-4
Adebayo OC, Nkoy AB, van den Heuvel LP, Labarque V, Levtchenko E, Delanaye P, Pottel H (2022) Glomerular hyperfiltration: part 2-clinical significance in children. Pediatr Nephrol. 10.1007/s00467-022-05826-5 DOI: 10.1007/s00467-022-05826-5
Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G (2010) Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 6:274–280. 10.2215/CJN.02760310 DOI: 10.2215/CJN.02760310
Sharma AP, Yasin A, Garg AX, Filler G (2011) Diagnostic accuracy of cystatin C-based eGFR equations at different GFR levels in children. Clin J Am Soc Nephrol 6:1599–1608. 10.2215/CJN.10161110 DOI: 10.2215/CJN.10161110
Webster-Clark M, Jaeger B, Zhong Y, Filler G, Alvarez-Elias A, Franceschini N, Díaz-González de Ferris ME (2018) Low agreement between modified-Schwartz and CKD-EPI eGFR in young adults: a retrospective longitudinal cohort study. BMC Nephrol 19:194. 10.1186/s12882-018-0995-1 DOI: 10.1186/s12882-018-0995-1