Global warming; Climate change; Overheating; Optimization
Abstract :
[en] This study examines three optimal solutions for mitigating overheating caused by disruptions in the cooling system amid heatwaves in Brussels. For this aim, the three highest maximal temperature heatwaves are selected during the 2001-2020, 2040-2060, and 2080-2100 periods based on the Regional Climate Model (MAR) “Modèle Atmosphérique Régional". A multi-indicator approach is applied using operative temperature, heat index, thermal autonomy, and indoor overheating degree metrics. The results reveal that none of the solutions are able to completely prevent overheating, with indoor temperatures reaching more than 29℃. The findings offer a distinct overview of climate change impacts on houses constructed in accordance with current Belgian legislation.
Disciplines :
Energy
Author, co-author :
Rahif, Ramin ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments
Norouziasas, Alireza; Department of Civil and Environmental Engineering, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
Hamdy, Mohamed; Department of Civil and Environmental Engineering, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
Attia, Shady ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments
Language :
English
Title :
Application of Simulation-Based Framework to Evaluate Performance of an Optimized Nearly Zero Energy Dwelling During Heatwaves in Belgium
Publication date :
04 September 2023
Event name :
Building Simulation 2023 Conference
Event organizer :
International Building Performance Simulation Association
Event place :
Shanghai, China
Event date :
4-6 September 2023
By request :
Yes
Audience :
International
Main work title :
Proceeding of the International Building Simulation Conference
Attia, S. (2021). Benchmark model for nearly-zero-energy terraced dwellings. Harvard Dataverse, Cambridge, United States. https://doi.org/10.7910/DVN/GJI84W
Attia, S., Benzidane, C., Rahif, R., Amaripadath, D., Hamdy, M., Holzer, P., Koch, A., Maas, A., Moosberger, S., Petersen, S., Mavrogianni, A., Maria Hidalgo-Betanzos, J., Almeida, M., Akander, J., Khosravi Bakhtiari, H., Kinnane, O., Kosonen, R., & Carlucci, S. (2023). Overheating calculation methods, criteria, and indicators in European regulation for residential buildings. Energy and Buildings, 292, 113170. https://doi.org/10.1016/j.enbuild.2023.113170
Attia, S., Canonge, T., Popineau, M., & Cuchet, M. (2022). Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings. Applied Energy, 306, 118128. https://doi.org/10.1016/j.apenergy.2021.118128
Attia, S., Levinson, R., Ndongo, E., Holzer, P., Berk Kazanci, O., Homaei, S., Zhang, C., Olesen, B. W., Qi, D., Hamdy, M., & Heiselberg, P. (2021). Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy and Buildings, 239, 110869. https://doi.org/10.1016/j.enbuild.2021.110869
Attia, S., Shadmanfar, N., & Ricci, F. (2020). Developing two benchmark models for nearly zero energy schools. Applied Energy, 263, 114614. https://doi.org/10.1016/j.apenergy.2020.114614
Bohnenstengel, S. I., Evans, S., Clark, P. A., & Belcher, S. E. (2011). Simulations of the London urban heat island. Quarterly Journal of the Royal Meteorological Society, 137(659), 1625–1640. https://doi.org/10.1002/qj.855
Brown, S. J. (2020). Future changes in heatwave severity, duration and frequency due to climate change for the most populous cities. Weather and Climate Extremes, 30, 100278. https://doi.org/10.1016/j.wace.2020.100278
Carlucci, S., & Pagliano, L. (2012). A review of indices for the long-term evaluation of the general thermal comfort conditions in buildings. Energy and Buildings, 53, 194–205. https://doi.org/10.1016/j.enbuild.2012.06.015
Climate Centre. (2020, May 5). European summer heatwaves the most lethal disaster of 2019, says international research group. https://www.climatecentre.org/565/europeansummer-heatwaves-the-most-lethal-disaster-of-2019says-international-research-group/
Doutreloup, S., Fettweis, X., Rahif, R., Elnagar, E., Pourkiaei, M. S., Amaripadath, D., & Attia, S. (2022). Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves. Earth System Science Data, 14(7), 3039–3051. https://doi.org/10.5194/essd-14-3039-2022
Enescu, D. (2017). A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79, 1353–1379. https://doi.org/10.1016/j.rser.2017.05.175
Hamdy, M., Carlucci, S., Hoes, P.-J., & Hensen, J. L. M. (2017). The impact of climate change on the overheating risk in dwellings—A Dutch case study. Building and Environment, 122, 307–323. https://doi.org/10.1016/j.buildenv.2017.06.031
Hooyberghs, H., Verbeke, S., Lauwaet, D., Costa, H., Floater, G., & De Ridder, K. (2017). Influence of climate change on summer cooling costs and heat stress in urban office buildings. Climatic Change, 144(4), 721–735. https://doi.org/10.1007/s10584-017-2058-1
IPCC WGII core writing team. (2022). Summary for Policymakers: Climate Change 2022—Impacts, Adaptation, and Vulnerability. (p. 7). p.7, IPCC Geneva, Switzerland. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf
Kazemi, M., & Courard, L. (2021). Modelling hygrothermal conditions of unsaturated substrate and drainage layers for the thermal resistance assessment of green roof: Effect of coarse recycled materials. Energy and Buildings, 250, 111315. https://doi.org/10.1016/j.enbuild.2021.111315
Kazemi, M., Rahif, R., Courard, L., & Attia, S. (2023). Sensitivity analysis and weather condition effects on hygrothermal performance of green roof models characterized by recycled and artificial materials’ properties. Building and Environment, 237, 110327. https://doi.org/10.1016/j.buildenv.2023.110327
Kwok, Y. T., Lai, A. K. L., Lau, K. K.-L., Chan, P. W., Lavafpour, Y., Ho, J. C. K., & Ng, E. Y. Y. (2017). Thermal comfort and energy performance of public rental housing under typical and near-extreme weather conditions in Hong Kong. Energy and Buildings, 156, 390–403. https://doi.org/10.1016/j.enbuild.2017.09.067
Lan, L., Tsuzuki, K., Liu, Y., & Lian, Z. (2017). Thermal environment and sleep quality: A review. Energy and Buildings, 149, 101–113. https://doi.org/10.1016/j.enbuild.2017.05.043Get
Laouadi, A., Bartko, M., & Lacasse, M. A. (2020). A new methodology of evaluation of overheating in buildings. Energy and Buildings, 226, 110360. https://doi.org/10.1016/j.enbuild.2020.110360
Levitt, B., Ubbelohde, M., Loisos, G., & Brown, N. (2013). Thermal autonomy as metric and design process. 47–58.
Mahar, W. A., Verbeeck, G., Reiter, S., & Attia, S. (2020). Sensitivity analysis of passive design strategies for residential buildings in cold semi-arid climates. Sustainability, 12(3), 1091. https://doi.org/10.3390/su12031091
McGregor, G. (2015). Heatwaves and health: Guidance on warning-system development. World Meterorological Organisation; World Health Organisation. https://www.who.int/globalchange/publications/heatwaves-health-guidance/en/
McLeod, R. S., & Swainson, M. (2017). Chronic overheating in low carbon urban developments in a temperate climate. Renewable and Sustainable Energy Reviews, 74, 201–220. https://doi.org/10.1016/j.rser.2016.09.106
Mitchell, R., & Natarajan, S. (2019). Overheating risk in Passivhaus dwellings. Building Services Engineering Research and Technology, 40(4), 446–469. https://doi.org/10.1177/014362441984200
Norouziasas, A., Tabadkani, A., Rahif, R., Amer, M., van Dijk, D., Lamy, H., & Attia, S. (2023). Implementation of ISO/DIS 52016-3 for adaptive façades: A case study of an office building. Building and Environment, 235, 110195. https://doi.org/10.1016/j.buildenv.2023.110195
Oke, T. (1995). The heat island of the urban boundary layer: Characteristics, causes and effects. Wind Climate in Cities, 81–107. https://doi.org/10.1007/978-94-017-3686-2_5
Ouzeau, G., Soubeyroux, J.-M., Schneider, M., Vautard, R., & Planton, S. (2016). Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Climate Services, 4, 1–12. https://doi.org/10.1016/j.cliser.2016.09.002
Ozarisoy, B. (2022). Energy effectiveness of passive cooling design strategies to reduce the impact of long-term heatwaves on occupants’ thermal comfort in Europe: Climate change and mitigation. Journal of Cleaner Production, 330, 129675. https://doi.org/10.1016/j.jclepro.2021.129675
Piderit, M. B., Vivanco, F., Van Moeseke, G., & Attia, S. (2019). Net zero buildings—A framework for an integrated policy in Chile. Sustainability, 11(5), 1494. https://doi.org/10.3390/su11051494
Pielke Jr, R., Burgess, M. G., & Ritchie, J. (2022). Plausible 2005–2050 emissions scenarios project between 2° C and 3° C of warming by 2100. Environmental Research Letters, 17(2), 024027. https://doi.org/10.1088/1748-9326/ac4ebf
Rahif, R., Amaripadath, D., & Attia, S. (2021). Review on Time-Integrated Overheating Evaluation Methods for Residential Buildings in Temperate Climates of Europe. Energy and Buildings, 252, 111463. https://doi.org/10.1016/j.enbuild.2021.111463
Rahif, R., Hamdy, M., Homaei, S., Zhang, C., Holzer, P., & Attia, S. (2022). Simulation-based framework to evaluate resistivity of cooling strategies in buildings against overheating impact of climate change. Building and Environment, 108599. https://doi.org/10.1016/j.buildenv.2021.108599
Rahif, R., Kazemi, M., & Attia, S. (2023). Overheating Analysis of Optimized Nearly Zero-Energy Dwelling During Current and Future Heatwaves Coincided with Cooling System Outage. Energy and Buildings, In Press.
Rahif, R., Norouziasas, A., Elnagar, E., Doutreloup, S., Pourkiaei, S. M., Amaripadath, D., Romain, A.-C., Fettweis, X., & Attia, S. (2022). Impact of climate change on nearly zero-energy dwelling in temperate climate: Time-integrated discomfort, HVAC energy performance, and GHG emissions. Building and Environment, 223, 109397. https://doi.org/10.1016/j.buildenv.2022.109397
RELi 2.0. (2020). Rating Guidelines for Resilient Design + Construction. U.S. Green Building Council.
Rempel, A. R., Danis, J., Rempel, A. W., Fowler, M., & Mishra, S. (2022). Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest. Applied Energy, 321, 119323. https://doi.org/10.1016/j.apenergy.2022.119323
Rothfusz, L. P., & Headquarters, N. S. R. (1990). The heat index equation (or, more than you ever wanted to know about heat index). Fort Worth, Texas: National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, 9023.
Sun, K., Specian, M., & Hong, T. (2020). Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home. Building and Environment, 177, 106842. https://doi.org/10.1016/j.buildenv.2020.106842
Witze, A. (2022). Extreme heatwaves: Surprising lessons from the record warmth. Nature, 608(7923), 464–465. https://doi.org/10.1038/d41586-022-02114-y
Zhang, C., Kazanci, O. B., Attia, S., Levinson, R., Lee, S. H., Holzer, P., Rahif, R., Salvati, A., Machard, A., Pourabdollahtootkaboni, M., Gauri, A., Olesen, B. W., & Heiselberg, P. K. (2023). IEA EBC Annex 80—Dynamic simulation guideline for the performance testing of resilient cooling strategies: Version 2 (DCE Technical Reports No. 306). Aaalborg University.
Zhang, C., Kazanci, O. B., Levinson, R., Heiselberg, P., Olesen, B. W., Chiesa, G., Sodagar, B., Ai, Z., Selkowitz, S., Zinzi, M., Mahdavi, A., Teufl, H., Kolokotroni, M., Salvati, A., Bozonnet, E., Chtioui, F., Salagnac, P., Rahif, R., Attia, S., … Zhang, G. (2021). Resilient cooling strategies – A critical review and qualitative assessment. Energy and Buildings, 251, 111312. https://doi.org/10.1016/j.enbuild.2021.111312
Zhou, X., Carmeliet, J., Sulzer, M., & Derome, D. (2020). Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves. Applied Energy, 278, 115620. https://doi.org/10.1016/j.apenergy.2020.115620
Zune, M., Rodrigues, L., & Gillott, M. (2020). The vulnerability of homes to overheating in Myanmar today and in the future: A heat index analysis of measured and simulated data. Energy and Buildings, 223, 110201. https://doi.org/10.1016/j.enbuild.2020.110201