Li D, et al. 2019. Superconductivity in an infinite-layer nickelate. Nature. 572(7771):624-627.
Osada M, et al. 2020. A superconducting praseodymium nickelate with infinite layer structure. Nano Lett. 20(8):5735-5740.
Hepting M, et al. 2020. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat Mater. 19(4):381-385.
Lu H, et al. 2021. Magnetic excitations in infinite-layer nickelates. Science. 373(6551):213-216.
Wang BY, et al. 2021. Isotropic pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat Phys. 17(4):473-477.
Xiang Y, et al. 2021. Physical properties revealed by transport measurements for superconducting Nd0.8Sr0.2NiO2 thin films. Chin Phys Lett. 38(4):047401.
Li D, et al. 2020. Superconducting dome in Nd1-xSrxNiO2 infinite layer films. Phys Rev Lett. 125(2):027001.
Zeng S, et al. 2020. Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2 thin films. Phys Rev Lett. 125(14): 147003.
Lechermann F. 2020. Multiorbital processes rule the Nd1-xSrxNiO2 normal state. Phys Rev X. 10(4):041002.
Lechermann F. 2020. Late transition metal oxides with infinite- layer structure: nickelates versus cuprates. Phys Rev B. 101(8): 081110.
Botana AS, Norman MR. 2020. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys Rev X. 10(1):011024.
Adhikary P, Bandyopadhyay S, Das T, Dasgupta I, Saha-Dasgupta T. 2020. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys Rev B. 102(10):100501.
Werner P, Hoshino S. 2020. Nickelate superconductors: multiorbital nature and spin freezing. Phys Rev B. 101(4):041104.
Leonov I, Skornyakov SL, Savrasov SY. 2020. Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping. Phys Rev B. 101(24):241108.
Karp J, et al. 2020. Many-body electronic structure of NdNiO2 and CaCuO2. Phys Rev X. 10(2):021061.
Chen D, Jiang P, Si L, Lu Y, Zhong Z. 2022. Magnetism in doped infinite-layer NdNiO2 studied by combined density functional theory and dynamical mean-field theory. Phys Rev B. 106(4): 045105.
Ryee S, Yoon H, Kim TJ, Jeong MY, Han MJ. 2020. Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd1-xSrxNiO2. Phys Rev B. 101(6):064513.
Petocchi F, Christiansson V, Nilsson F, Aryasetiawan F, Werner P. 2020. Normal state of Nd1-xSrxNiO2 from self-consistent GW+ EDMFT. Phys Rev X. 10(4):041047.
Kapeghian J, Botana AS. 2020. Electronic structure and magnetism in infinite-layer nickelates RNiO2 (R = La-Lu). Phys Rev B. 102(20):205130.
Choi M-Y, Pickett WE, Lee K-W. 2020. Fluctuation-frustrated flat band instabilities in NdNiO2. Phys Rev Res. 2(3):033445.
Zhang R, et al. 2021. Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like band. Commun Phys. 4(1):1-12.
Lechermann F. 2021. Doping-dependent character and possible magnetic ordering of NdNiO2. Phys Rev Mater. 5(4):044803.
Been E, et al. 2021. Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates. Phys Rev X. 11(1):011050.
Choi M-Y, Lee K-W, Pickett WE. 2020. Role of 4f states in infinite- layer NdNiO2. Phys Rev B. 101(2):020503.
Wan X, Ivanov V, Resta G, Leonov I, Savrasov SY. 2021. Exchange interactions and sensitivity of the Ni two-hole spin state to Hund's coupling in doped NdNiO2. Phys Rev B. 103(7):075123.
Liu Z, Ren Z, Zhu W, Wang Z, Yang J. 2020. Electronic and magnetic structure of infinite-layer NdNiO2 trace of antiferromagnetic metal. npj Quantum Mater. 5(1):1-8.
Nomura Y, et al. 2019. Formation of a two-dimensional single- component correlated electron system and band engineering in the nickelate superconductor NdNiO2. Phys Rev B. 100(20): 205138.
Xia C, Wu J, Chen Y, Chen H. 2022. Dynamical structural instability and its implications for the physical properties of infinite- layer nickelates. Phys Rev B. 105(11):115134.
Bernardini 3, Bosin A, Cano A. 2022. Geometric effects in the infinite-layer nickelates. Phys Rev Mater. 6(4):044807.
. Structural instabilities of infinite-layer nickelates from first-principles simulations. Phys Rev Res. 4(2):023064.
Jiang Mi, Berciu M, Sawatzky GA. 2020. Critical nature of the Ni spin state in doped NdNiO2. Phys Rev Lett. 124(20):207004.
Wu X, et al. 2020. Robust dx2-y2-wave superconductivity of infinite-layer nickelates. Phys Rev B. 101(6):060504.
Klett M, Hansmann P, Schäfer T. 2022. Magnetic properties and pseudogap formation in infinite-layer nickelates: insights from the single-band hubbard model. Front Phys. 10:45.
Wang Z, Zhang G-M, Yang Y-F, Zhang F-C. 2020. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys Rev B. 102(22):220501.
Goodge BH, et al. 2021. Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates. Proc Natl Acad Sci USA. 118(2):e2007683118.
Tam CC, et al. 2022. Charge density waves in infinite-layer NdNiO2 nickelates. Nat Mater. 21:1116-1120.
Malyi OI, Varignon J, Zunger A. 2022. Bulk NdNiO2 is thermodynamically unstable with respect to decomposition while hydrogenation reduces the instability and transforms it from metal to insulator. Phys Rev B. 105(1):014106.
Fowlie J, et al. 2022. Intrinsic magnetism in superconducting infinite-layer nickelates. Nat Phys. 18(4):1043-1047.
Wang BY, et al. 2022. Rare-earth control of the superconducting upper critical field in infinite-layer nickelates. arXiv, arXiv:2205.15355, preprint: not peer reviewed.
Gao Q, et al. 2022. Magnetic excitations in strained infinite-layer nickelate PrNiO2. arXiv, arXiv:2208.05614, preprint: not peer reviewed.
Been EM, et al. 2022. On the nature of valence charge and spin excitations via multi-orbital Hubbard models for infinite-layer nickelates. Front Phys. 10:836959.
Xie TY, et al. 2022. Microscopic theory of superconducting phase diagram in infinite-layer nickelates. Phys Rev B. 106(3):035111.
Kreisel A, Andersen B M, Rømer A T, Eremin IM, Lechermann F. 2022. Superconducting instabilities in strongly correlated infinite-layer nickelates. Phys Rev Lett. 129(7):077002.
Catalano S, et al. 2018. Rare-earth nickelates RNiO3: thin films and heterostructures. Rep Prog Phys. 81(4):046501.
Middey S, et al. 2016. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu Rev Mater Res. 46:305-334.
Yuan HQ, et al. 2009. Nearly isotropic superconductivity in (Ba, K) Fe2As2. Nature. 457(7229):565-568.
de La Cruz C, et al. 2008. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems. Nature. 453(7197):899-902.
Goh SK, et al. 2015. Ambient pressure structural quantum critical point in the phase diagram of (CaxSr1-x)3Rh4Sn13. Phys Rev Lett. 114(9):097002.
Zhou JS, Goodenough JB. 2004. Chemical bonding and electronic structure of RNiO3 R = rare earth). Phys Rev B. 69(15):153105.
Mercy A, Bieder J, Íñiguez J, Ghosez P. 2017. Structurally triggered metal-insulator transition in rare-earth nickelates. Nat Commun. 8(1):1-6.
Peil OE, Hampel A, Ederer C, Georges A. 2019. Mechanism and control parameters of the coupled structural and metal-insulator transition in nickelates. Phys Rev B. 99(24): 245127.
Hampel A, Liu P, Franchini C, Ederer C. 2019. Energetics of the coupled electronic-structural transition in the rare-earth nickelates. npj Quantum Mater. 4(1):1-7.
Georgescu AB, Peil OE, Disa AS, Georges A, Millis AJ. 2019. Disentangling lattice and electronic contributions to the metal-insulator transition from bulk vs. layer confined RNiO3. Proc Natl Acad Sci USA. 116(29):14434-14439.
Liao Z, et al. 2018. Metal-insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proc Natl Acad Sci USA. 115(38): 9515-9520.
Varignon, Grisolia MN, Íñiguez J, Barthélémy A, Bibes M. 2017. Complete phase diagram of rare-earth nickelates from first- principles. npj Quantum Mater. 2(1):1-9.
Wojdeł JC, Hermet P, Ljungberg MP, Ghosez P, Iniguez J67. 2013. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J Phys: Condens Matter. 25(30):305401.
Zhong W, Vanderbilt D, Rabe KM. 1994. Phase transitions in BaTiO3 from first principles. Phys Rev Lett. 73(13):1861.
Hui Q, Tucker MG, Dove MT, Wells SA, Keen DA. 2005. Total scattering and reverse monte carlo study of the 105 K displacive phase transition in strontium titanate. J Phys: Condens Matter. 17(5):S111.
Klarbring J, Simak SI. 2018. Nature of the octahedral tilting phase transitions in perovskites: a case study of CaMnO3. Phys Rev B. 97(2):024108.
, Thomas JC, Van der Ven A. 2020. Order-disorder versus displacive transitions in Jahn-Teller active layered materials. Phys Rev Mater. 4(4):043601.
Zhong W, Vanderbilt D, Rabe KM. 1995. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3. Phys Rev B. 52(9):6301.
Perdew JP, et al. 2008. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 100(13):136406.
Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. 1998. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B. 57(3):1505.
Pizzi G, Volja D, Kozinsky B, Fornari M, Marzari N. 2014. Boltzwann: a code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. Comput Phys Commun. 185(1):422-429.
Endoh Y, et al. 1988. Static and dynamic spin correlations in pure and doped La2CuO4. Phys Rev B. 37(13):7443.
Zhao J, et al. 2009. Spin waves and magnetic exchange interactions in CaFe2As2. Nat Phys. 5(8):555-560.
Dai P, Hu J, Dagotto E. 2012. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat Phys. 8(10): 709-718.
McQueeney RJ, et al. 2008. Anisotropic three-dimensional magnetism in CaFe2As2. Phys Rev Lett. 101(22):227205.
Fisk Z, Thompson JD, Zirngiebl E, Smith JL, Cheong S-W. 1987. Superconductivity of rare earth-barium-copper oxides. Solid State Commun. 62(11):743-744.
Ren Z-A, et al. 2008. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ (Re = rare-earth metal) without fluorine doping. Europhys Lett. 83(1):17002.
Fedorova NS, et al. 2018. Relationship between crystal structure and multiferroic orders in orthorhombic perovskite manganites. Phys Rev Mater. 2(10):104414.
Hornreich RM. 1978. Magnetic interactions and weak ferromagnetism in the rare-earth orthochromites. J Magn Magn Mater. 7(1-4):280-285.
Treves D, Eibschutz M, Coppens P. 1965. Dependence of superexchange interaction on Fe3+-O2-FE3+ linkage angle. Phys Lett. 18: 216.
Medarde ML. 1997. Structural, magnetic and electronic properties of perovskites (R = rare earth). J Phys: Condens Matter. 9(8):1679.
Lang Z-J, Jiang R, Ku W. 2021. Strongly correlated doped hole carriers in the superconducting nickelates: their location, local many-body state, and low-energy effective Hamiltonian. Phys Rev B. 103(18):L180502.
Yu R, Si Q. 2013. Orbital-selective Mott phase in multiorbital models for alkaline iron selenides K1-xFe2-ySe2. Phys Rev Lett. 110(14):146402.
Yi M, et al. 2013. Observation of temperature-induced crossover to an orbital-selective Mott phase in AxFe2-ySe2 (A=K, Rb) superconductors. Phys Rev Lett. 110(6):067003.
Anisimov VI, Nekrasov IA, Kondakov DE, Rice TM, Sigrist M. 2002. Orbital-selective Mott-insulator transition in Ca2-xSrxRuO4. Eur Phys J B. 25(2):191-201.
de'Medici L, Hassan SR, Capone M, Dai X. 2009. Orbital-selective Mott transition out of band degeneracy lifting. Phys Rev Lett. 102(12):126401.
Lee K-W, Pickett WE. 2004. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys Rev B. 70(16):165109.
Misawa T, Nakamura K, Imada M. 2012. Ab initio evidence for strong correlation associated with Mott proximity in iron-based superconductors. Phys Rev Lett. 108(17):177007.
Kou S-P, Li T, Weng ZY. 2009. Coexistence of itinerant electrons and local moments in iron-based superconductors. Europhys Lett. 88(1):17010.
Nanda BRK, Satpathy S. 2008. Effects of strain on orbital ordering and magnetism at perovskite oxide interfaces: LaMnO3/SrMnO3. Phys Rev B. 78(5):054427.
Zhou J-S, Goodenough JB, Dabrowski B. 2005. Exchange interaction in the insulating phase of RNiO3. Phys Rev Lett. 95(12):127204.
Kresse G, Hafner J. 1993. Ab initio molecular dynamics for liquid metals. Phys Rev B. 47(1):558.
Blöchl PE. 1994. Projector augmented-wave method. Phys Rev B. 50(24):17953.
Monkhorst HJ, Pack JD. 1976. Special points for Brillouin-zone integrations. Phys Rev B. 13(12):5188.
Togo A, Oba F, Tanaka I. 2008. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B. 78(13):134106.
He X, Helbig N, Verstraete MJ, Bousquet E. 2021. TB2J: a python package for computing magnetic interaction parameters. Comput Phys Commun. 264:107938.
Liechtenstein A, Katsnelson MI, Antropov VP, Gubanov VA. 1987. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J Magn Magn Mater. 67(1):65-74.
Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D. 2012. Maximally localized Wannier functions: theory and applications. Rev Mod Phys. 84(4):1419.
Mostofi AA, et al. 2014. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput Phys Commun. 185(8):2309-2310.
Toth S, Lake B. 2015. Linear spin wave theory for single-Q incommensurate magnetic structures. J Phys: Condens Matter. 27(16): 166002.