Floquet engineering; cold gases in optical lattices; parametric instability; Multidisciplinary
Abstract :
[en] In quantum gases, two-body interactions are responsible for a variety of instabilities that depend on the characteristics of both trapping and interactions. These instabilities can lead to the appearance of new structures or patterns. We report on the Floquet engineering of such a parametric instability, on a Bose-Einstein condensate held in a time-modulated optical lattice. The modulation triggers a destabilization of the condensate into a state exhibiting a density modulation with a new spatial periodicity. This new crystal-like order, which shares characteristic correlation properties with a supersolid, directly depends on the modulation parameters: The interplay between the Floquet spectrum and interactions generates narrow and adjustable instability regions, leading to the growth, from quantum or thermal fluctuations, of modes with a density modulation noncommensurate with the lattice spacing. This study demonstrates the production of metastable exotic states of matter through Floquet engineering and paves the way for further studies of dissipation in the resulting phase and of similar phenomena in other geometries.
Disciplines :
Physics
Author, co-author :
Dupont, Nathan ; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Gabardos, Lucas; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Arrouas, Floriane; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Chatelain, Gabriel; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Arnal, Maxime; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Billy, Juliette; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Schlagheck, Peter ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Peaudecerf, Bruno ; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Guéry-Odelin, David ; Laboratoire Collisions Agrégats Réactivité, UMR 5589, Fédération de Recherche Matière et Interactions, Université Toulouse 3, CNRS, Toulouse, CEDEX 09 31062, France
Language :
English
Title :
Emergence of tunable periodic density correlations in a Floquet-Bloch system.
Publication date :
08 August 2023
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ACKNOWLEDGMENTS. We thank Jean Dalibard for helpful discussions. This work was supported by research funding Grant No. ANR-17-CE30-0024. N.D. and F.A. acknowledge support from Région Occitanie and Université Toulouse III-Paul Sabatier. M.A. acknowledges support from the DGA (Direction Générale de l’Armement).
R. Lopes et al., Quantum depletion of a homogeneous Bose-Einstein condensate. Phys. Rev. Lett. 119, 190404 (2017).
K. Xu et al., Observation of strong quantum depletion in a gaseous Bose-Einstein condensate. Phys. Rev. Lett. 96, 180405 (2006).
H. Cayla et al., Hanbury Brown and Twiss bunching of phonons and of the quantum depletion in an interacting Bose gas. Phys. Rev. Lett. 125, 165301 (2020).
A. Tenart, G. Hercé, J. P. Bureik, A. Dareau, D. Clément, Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas. Nat. Phys. 17, 1364-1368 (2021).
J. Kronjäger, C. Becker, P. Soltan-Panahi, K. Bongs, K. Sengstock, Spontaneous pattern formation in an antiferromagnetic quantum gas. Phys. Rev. Lett. 105, 090402 (2010).
C. L. Hung, V. Gurarie, C. Chin, From cosmology to cold atoms: Observation of Sakharov oscillations in a quenched atomic superfluid. Science 341, 1213-1215 (2013).
J. R. Li et al., A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates. Nature 543, 91-94 (2017).
J. Léonard, A. Morales, P. Zupancic, T. Esslinger, T. Donner, Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87-90 (2017).
F. Böttcher et al., Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
L. Tanzi et al., Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).
L. Chomaz et al., Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442-446 (2018).
L. Chomaz et al., Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
J. Zhang, C. Zhang, J. Yang, B. Capogrosso-Sansone, Supersolid phases of lattice dipoles tilted in three dimensions. Phys. Rev. A 105, 063302 (2022).
P. Engels, C. Atherton, M. A. Hoefer, Observation of Faraday waves in a Bose-Einstein condensate. Phys. Rev. Lett. 98, 095301 (2007).
R. Cominotti et al., Observation of massless and massive collective excitations with Faraday patterns in a two-component superfluid. Phys. Rev. Lett. 128, 210401 (2022).
K. W. Madison, F. Chevy, V. Bretin, J. Dalibard, Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett. 86, 4443-4446 (2001).
S. Sinha, Y. Castin, Dynamic instability of a rotating Bose-Einstein condensate. Phys. Rev. Lett. 87, 190402 (2001).
B. Mukherjee et al., Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58-62 (2022).
J. H. V. Nguyen, D. Luo, R. G. Hulet, Formation of matter-wave soliton trains by modulational instability. Science 356, 422-426 (2017).
J. Nguyen et al., Parametric excitation of a Bose-Einstein condensate: From Faraday waves to granulation. Phys. Rev. X 9, 011052 (2019).
Z. Zhang, K. X. Yao, L. Feng, J. Hu, C. Chin, Pattern formation in a driven Bose-Einstein condensate. Nat. Phys. 16, 652-656 (2020).
S. Fazzini, P. Chudzinski, C. Dauer, I. Schneider, S. Eggert, Nonequilibrium Floquet steady states of time-periodic driven Luttinger liquids. Phys. Rev. Lett. 126, 243401 (2021).
N. Goldman, J. Dalibard, Periodically driven quantum systems: Effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).
M. Holthaus, Floquet engineering with quasienergy bands of periodically driven optical lattices. J. Phys. B: At. Mol. Opt. Phys. 49, 013001 (2016).
A. Eckardt, Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017).
C. Weitenberg, J. Simonet, Tailoring quantum gases by Floquet engineering. Nat. Phys. 17, 1342-1348 (2021).
K. W. Madison, M. C. Fischer, R. B. Diener, Q. Niu, M. G. Raizen, Dynamical Bloch band suppression in an optical lattice. Phys. Rev. Lett. 81, 5093-5096 (1998).
H. Lignier et al., Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007).
E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M. K. Oberthaler, Single-particle tunneling in strongly driven double-well potentials. Phys. Rev. Lett. 100, 190405 (2008).
L. C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, C. Chin, Roton-Maxon excitation spectrum of Bose condensates in a shaken optical lattice. Phys. Rev. Lett. 114, 055301 (2015).
A. Eckardt, C. Weiss, M. Holthaus, Superfluid-insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 95, 260404 (2005).
A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, E. Arimondo, Coherent control of dressed matter waves. Phys. Rev. Lett. 102, 100403 (2009).
C. V. Parker, L. C. Ha, C. Chin, Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice. Nat. Phys. 9, 769-774 (2013).
L. Feng, L. W. Clark, A. Gaj, C. Chin, Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point. Nat. Phys. 14, 269-272 (2018).
B. Song et al., Realizing discontinuous quantum phase transitions in a strongly correlated driven optical lattice. Nat. Phys. 18, 259-264 (2022).
J. Struck et al., Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996-999 (2011).
M. Aidelsburger et al., Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).
N. Cooper, J. Dalibard, I. Spielman, Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).
S. Lellouch, M. Bukov, E. Demler, N. Goldman, Parametric instability rates in periodically driven band systems. Phys. Rev. X 7, 021015 (2017).
M. Reitter et al., Interaction dependent heating and atom loss in a periodically driven optical lattice. Phys. Rev. Lett. 119, 200402 (2017).
S. Lellouch, N. Goldman, Parametric instabilities in resonantly-driven Bose-Einstein condensates. Quantum Sci. Technol. 3, 024011 (2018).
T. Boulier et al., Parametric heating in a 2D periodically driven Bosonic system: Beyond the weakly interacting regime. Phys. Rev. X 9, 011047 (2019).
K. Wintersperger et al., Parametric instabilities of interacting Bosons in periodically driven 1D optical lattices. Phys. Rev. X 10, 011030 (2020).
A. Rubio-Abadal et al., Floquet prethermalization in a Bose-Hubbard system. Phys. Rev. X 10, 021044 (2020).
A. Di Carli et al., Instabilities of interacting matter waves in optical lattices with Floquet driving. arXiv [Preprint] (2023). http://arxiv.org/abs/2303.06092v1 (Accessed 24 April 2023).
G. K. Campbell et al., Parametric amplification of scattered atom pairs. Phys. Rev. Lett. 96, 020406 (2006).
B. Galilo, D. K. K. Lee, R. Barnett, Selective population of edge states in a 2D topological band system. Phys. Rev. Lett. 115, 245302 (2015).
G. Engelhardt, M. Benito, G. Platero, T. Brandes, Topological instabilities in AC-driven Bosonic systems. Phys. Rev. Lett. 117, 045302 (2016).
N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, S. Chu, Parametric amplification of matter waves in periodically translated optical lattices. Phys. Rev. Lett. 95, 170404 (2005).
E. Michon et al., Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system. New J. Phys. 20, 053035 (2018).
M. Mitchell et al., Floquet solitons and dynamics of periodically driven matter waves with negative effective mass. Phys. Rev. Lett. 127, 243603 (2021).
A. Fortun et al., Direct tunneling delay time measurement in an optical lattice. Phys. Rev. Lett. 117, 010401 (2016).
M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger, Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001).
A. Tenart et al., Two-body collisions in the time-of-flight dynamics of lattice Bose superfluids. Phys. Rev. Res. 2, 013017 (2020).
G. Chatelain et al., Observation and control of quantized scattering halos. New J. Phys. 22, 123032 (2020).
M. J. Steel et al., Dynamical quantum noise in trapped Bose-Einstein condensates. Phys. Rev. A 58, 4824-4835 (1998).
A. Sinatra, C. Lobo, Y. Castin, The truncated Wigner method for Bose-condensed gases: Limits of validity and applications. J. Phys. B: At., Mol. Opt. Phys. 35, 3599-3631 (2002).
A. Polkovnikov, Phase space representation of quantum dynamics. Ann. Phys. 325, 1790-1852 (2010).
J. Dujardin, T. Engl, J. D. Urbina, P. Schlagheck, Describing many-body Bosonic waveguide scattering with the truncated Wigner method. Ann. Phys. 527, 629-638 (2015).
L. Asteria, H. P. Zahn, M. N. Kosch, K. Sengstock, C. Weitenberg, Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems. Nature 599, 571-575 (2021).
H. Zahn et al., Formation of spontaneous density-wave patterns in DC driven lattices. Phys. Rev. X 12, 021014 (2022).
N. Dupont et al., Emergence of tunable periodic density correlations in a Floquet-Bloch system. Zenodo. https://zenodo.org/record/8127829. Deposited 9 July 2023.