Reeves G M, Sims I, Cripps J C (2006). Clay material used in construction. The Geological Society, Special publication 21, London, 552p.
Millot, G., Géologie des argiles. 1964, Masson, Paris, 449p.
Nkoumbou C, Njoya A, Njopwouo D, Wandji R (2001). Intérêts économiques des matériaux argileux. Actes de la première Conférence sur la Valorisation des Matériaux Argileux au Cameroun. Yaoundé Cameroun, 1-12.
El Boudour El Idrissi H, Daoudi L, El Ouahabi M, Balo Madi A, Collin F, Fagel N (2016). Suitability of soils and river deposits from Marrakech for the manufacturing of earthenware, Appl. Clay Sci. 129. 108–115, https://doi.org/10.1016/j.clay.2016.05.013.
Kornmann, M., Matériaux de construction en terre cuite. 2005, Septima, 275p.
Abdelhak A, Abdallah S, Redouane M, Taouik R, Moussa G (2007). Caractéristiques structurales et mécaniques de céramiques à base d'argiles: influence de la source de feldspath. J Crci 10:502– 510. https://doi.org/10.1016/j.crci.2006.01.005C.
Tsozue, D., Nzeukou Nzeugang, A., Mache, J.R., Loweh, S., Fagel, N., Mineralogical, physico-chemical and technological characterization of clays from Maroua (Far-North, Cameroon) for use in ceramic bricks production. J. Build. Eng. 11 (2017), 17–24, 10.1016/j.jobe.2017.03.008.
Sousa, S.J.G., Holanda, J.N.F., Development of red wall tiles by the dry process using Brazilian raw materials. Cera. Int. 2 (2005), 215–222.
Daoudi L, El Boudour El Idrissi H, Saadi L, Albizane A, Bennazha J, Waqif M, El Ouahabi M, Fagel N (2014). Characteristics and ceramic properties of clayey materials from Amezmiz region (Western High Atlas, Morocco), Appl. Clay Sci. 102. 139-147. https://doi.org/10.1016/j.clay.2014.09.029.
Njoya A, Ekodeck G E, Nkoumbou C, Njopwouo D, Tchoua F M (2001). Matériaux argileux au Cameroun: Gisements et exploitation. Acte de la 1ère conférence sur la valorisation des matériaux argileux au Cameroun, 11-12 avril 2001, 13-30.
Ngon Ngon, G.F., Yongue Fouateu, R., Lecomte Nana, G.L., Bitom, D.L., Bilong, P., Lecomte, G., Study of physical and mechanical applications on ceramics of the lateritic and alluvial clayey mixtures of the Yaoundé region (Cameroon). J. Constr. Build. Mater. 31 (2012), 294–299, 10.1016/j.conbuildmat.2011.12.108.
Tassongwa, B., Nkoumbou, C., Njoya, D., Njoya, A., Tchop, J.L., Yvon, J., Njopwouo, D., Géochemical and Minéralogical Characteristics of the Mayouon Kaolin Deposit. West Cameroun. Earth Sci. 3:1 (2014), 94–107, 10.105539/ers.v3n1.
Tassongwa, B., Njoya, A., Mfembena Pouepene, R.A.J., Mbog, M.B., Kenfack, J.V., Kagou Dongmo, A., Wouatong, A.S.L., Efect of volcanic ashes addition on ceramic properties of clayey materials from Koutaba (Western Cameroon). J. Arab. Geos, 15, 2022, 541, 10.1007/s12517-022-09808-7.
Bomeni I Y, Njoya A, Ngapgue F, Wouatong A S L, Yongue Fouateu R, Kamgang Beyala Kabeyene V, Fagel F (2018a). Ceramic with the potential application of Ngwenfon alluvial clays (noun, west Cameroon) in building construction: Mineralogy, physicochemical composition, and thermal behavior. J Con. Build. Mater 182:493–503. https://doi.org/10.1016/j.conbuildmat.2018.06.135.
Nkalih Mefire, A., Njoya, A., Yongue Fouateu, R., Mache, J.R., Tapon, N.A., Nzeugang Nzeugang, A., Chinje, U.M., Pilate, P., Flament, P., Siniapkine, S., Ngono, A., Fagel, N., Occurrences of kaolin in Koutaba (west Cameroon): Mineralogical and physicochemical characterization for use in ceramic products. Clay Miner. 50 (2015), 593–606, 10.1180/claymin.2015.050.5.04.
Tchounang Kounang, S., Wouatong, A.S.L., Deutou, J.G., Yerima, K.P.B., Njopwouo, D., Assessment of ceramic properties of fired clayed brick materials from Bamessing in Nord-West Cameroon. J Inter. C 65 (2016), 087–096.
Nzeukou Nzeugang, A., Tsozué, D., Kagonbé, P.B., Balo, M.A., Fankam, D., Ngos, S. III, Nkoumbou, C., Fagel, N., Clayed soils from Boulgou (North Cameroon): geotechnical, mineralogical, chemical characteristics and properties of their fired products. J. SN Appl. Sci., 3, 2021, 551, 10.1007/s42452-021-04541-4.
Olivry JC (1986). Fleuves et rivières du Cameroun, Monographies hydrologiques, MESRES/ORSTOM, N. p 733.
Déruelle, B., Ngounouno, I., Demaife, D., The Cameroon hot line (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C.R. Geosci. 339 (2007), 589–600, 10.1016/j.crte.2007.07.007.
Dumort JC (1968). Carte géologique de reconnaissance au 1/500000 D.M.G. Yaoundé. Imprimerie Nationale, 69 p.
Cook H E, Johnson P D, Matti J C, Zemmels I (1975). Methods of Sample Preparation and X-ray Diffraction in X-ray Mineralogy Laboratory (Deep Sea Drilling Project), University of California, Riverside 999-1007. Contribution 74-5.
Thorez J (1976). In: Lelotte, G. (Ed.), Practical Identification of Clay Minerals. Liège, pp. 90.
Fagel, N., Boski, T., Likhoshway, L., Oberhaensli, H., Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 193 (2003), 159–179, 10.1016/S0031-0182(02)00633-8.
America Society for Testing Materials-ASTM (1998). Standard Test Method for Particle-Size Analysis of Soils. ASTM D-422-63, 8p.
America Society for Testing Materials-ASTM (2000). Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM D-4318, 14p.
America Society for Testing Materials-ASTM, Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products. Am. Soc. Civil Eng. C, 373, 1972, 72p.
NF P15-451. Essais mécaniques. Flexion et compression, AFNOR., Juillet 1963, 2p.
Bomeni, I.Y., Wouatong, A.S.L., Ngapgue, F., Kamgang Beyala Kabeyene, V., Fagel, F., Geological and physicochemical study of the alluvial clay of the Monoun plain (west Cameroon) as raw materials for ceramic product. J. Clay Sci. 22 (2018), 29–37.
Nzeukou, A., Traina, K., Medjo, E.R., Kamseu, E., Njoya, A., Melo, U.C., Kamgang, B.V., Cloots, R., Fagel, N., Mineralogical and Physical Changes during Sintering of Plastic Red Clays from Sanaga Swampy Valley, Cameroon. Inter. Ceram. Rev. 63:4 (2014), 186–192.
Baran, B., Ertürk, T., Sarikaya, Y., Alemdaroglu, T., Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl. Clay Sci. 20 (2001), 53–63.
Kloprogge, J.T., Ruan, H.D., Frost, R., Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J. Mater. Sci. 37 (2002), 1121–1129, 10.1023/A:1014303119055.
Lorentz, B., Shanahan, N., Stetsko, Y.P., Zayed, A., Characterization of Florida kaolin clays. Using multiple-technique approach. Appl. Clay Sci. 161 (2018), 326–333, 10.1016/j.clay.2018.05.001.
Pialy, P., Nkoumbou, C., Villieras, R.F., Barres, A., Pelletier, O., Ollivier, M., Bihannic, G., Njopwouo, I., Yvon, D., Bonnet, J., Characterization for industrial applications of clays from Lembo deposit, Mount Bana (Cameroon). Clay Miner. 43 (2008), 415–435.
Celik, H., Technological characterisation and industrial application of two Turkish clays for the ceramic industry. Appl. Clay Sci. 50 (2010), 245–254.
Farmer, V.C., The Infrared Spectra of Minerals. 1974, Miner. Soci, London.
Cases, J.M., Lietard, O., Yvon, J., Delon, J.F., Etude des propriétés cristallographiques, morphologiques et superficielles de la kaolinite désordonnée. Bull. Min. 105 (1982), 439–457.
Njoya A, Nkoumbou C, Grosbois C, Njopwouo D, Njoya D, Courtin-Nomade A, Martin F (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Appl. Clay Sci. 32(1), 125-140. https://doi.org/10.1016/j.clay.2005.11.005.
Hammami-Ben Zaied, F., Abidi, R., Slim-Shimi, N., Somarin, A., Potentiality of clay raw materials from Gram area (Northern Tunisia) in the ceramic industry. Appl. Clay Sci. 112–113 (2015), 1–9.
Brindley, G.W., Chih-Chun, K., Harrisson, J.L., Lipsicas, M., Raythatha, R., Relations between structural disorder and other characteristics of kaolinites and dickites. Clay Clay Miner. 34 (1986), 239–249.
Kakali G, Perraki T, Tsivilis.S, Badogiannis E (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. J. Appl. Clay Sci. 20, 73-80.
Van der Marel, H.W., Khroner, P., OH stretching vibrations in kaolinite and related minerals. Cong. Miner. Petrol. 22 (1969), 73–82.
Velde, B., Meunier, A., The Origin of Clay Minerals in Soils and Weathered Rocks. 2008, Springer-Verlag, 334.
Bewa, N.C., Tchakounté, K.H., Banenzoué, C., Cakanou, L., Tchakounté Mbakop, T., Kamseu, E., Rüscher, C.H., Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Appl. Clay Sci., 198, 2020, 13p, 10.1016/j.clay.2020.105813.
Fiori, C., Fabbri, B., Donati, G., Venturi, I., Mineralogical composition of the clay bodies used in the Italian tile industry. Appl. Clay Sci. 4:5–6 (1989), 461–473.
Winkler Beri, H.G.F., Deutsc, Bedeutung der Kongrô Benverteilung und des Mineral bestandes von Tonen fur die Herstellung grobkeramischer Erzeugnisse. Ber. der Deutsc. Keram. Gesell. 31 (1954), 337–343.
Fabbri, B., Fiori, C., Clays and complementary raw materials for stoneware tiles. Miner. Petrog. Acta, 29-A, 1985, 535.
Fiori C and Fabbri B (1985). Technological evolution of the Italian ceramic floor and wall tile industry. Interbrick1 (5), 38.
Kieufack G, Bomeni IY, Ngapgue F, Tchamba. A.B, Mbog M B, Tchounang Kounang.S, Wouatong. A S L (2021). Potential use of alluvial clays from Monoun in ceramics by adding feldspar from Batie (West-Cameroon) as a fluxing agent. SN Appl. Sci. 3, 856. https://doi.org/10.1007/s42452-021-04837-5.
Temga, J.P., Mache, J.R., Madib, B.A., Nguetnkam, J.P., Bitom, L.D., Ceramics applications of clay in Lake Chad Basin, Central Africa. Appl. Clay Sci. 171 (2019), 118–132, 10.1016/j.clay.2019.02.003.
Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T., Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J. Mater. Process. Technol. 209 (2009), 2812–2817.
El Ouahabi, M., Daoudi, L., Fagel, N., Preliminary Mineralogical and Geotechnical Characterization of Clays from Morocco: Application to Ceramic Industry. Clay Miner. 49 (2014), 1–17.
Milheiro, F.A.C., Freire, M.N., Silva, A.G.P., Holanda, J.N.F., Densification behaviour of a red firing Brazilian kaolinitic clay. Ceram. Int. 31 (2005), 757–763.
Monteiro, N.V., Vieira, C.M.F., Characterization of clays from Campos dos Goytacazes, North Rio De Janeiro State (Brazil). Tile Brick Int. 18:03 (2002), 152–157.
Pardo, F., Meseguer, S., Jordán, M.M., Sanfeliu, T., González, I., Firing transformations of Chilean clays for the manufacture of ceramic tile bodies. Appl. Clay Sci. 51 (2011), 147–150, 10.1016/j.clay.2010.11.022.
America Society for Testing Materials-ASTM C531, Standard Test Methods for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes. 2000, ASTM International, West Conshohocken, PA.
NF P 12-024-2. Spécification pour éléments de maçonnerie Partie 1: Briques de terre cuite.