Mitigation of Climate Change Impact on Bioclimatic Conditions Using Different Green Space Scenarios: The Case of a Hospital in Gorgan Subtropical Climates
green space; Envi-met; climate change; bioclimatic; climate modeling
Abstract :
[en] Urban development and its climatic consequences have caused urban decision-makers to establish strategies to mitigate climate change. The implementation of different green spaces is one of the main strategies to reduce the environmental and climatic consequences of urbanization. Therefore, the main objective of this research is to reveal the effect of different green space scenarios on micro-bioclimatic conditions of a hospital located in Gorgan city, Golestan province. Therefore, in order to determine the position of the hospital building relative to Gorgan’s urban heat island (UHI), the location and changes in UHI intensity of Gorgan were determined as evidence of urban expansion. Since 27 July was determined as the hottest day in Gorgan city based on historical data analysis, the climatic conditions during 27 July 2021 were measured using an AR847 data logger installed in the hospital environment. Additionally, four different conditions, including actual environmental conditions of the hospital (actual conditions), along with the application of cypress trees (scenario A), plane trees (scenario B), and Buxus shrubs (scenario C), have been used to analyze the impact of different vegetation species on the bioclimatic conditions of 5 Azar Hospital during two time intervals, including observational periods (1970–2020) and the decade of the 2040s. Finally, spatiotemporal patterns of the predicted mean vote (PMV) thermal index were calculated for the observational period and during the 2040s using the ENVI-met micro-scale model. Results showed that the study site is in the UHI, which can affect the micro-bioclimatic conditions and the patient’s thermal perception. For all designed scenarios, results indicate that the average PMV index will increase by the 2040s. However, implementing different green space scenarios showed that the minimum and maximum values of PMV were found in scenario B, of 2.7. The actual PMV conditions of the studied site increased by 3.5. The scenario introduction of green spaces during the 2040s indicates that the average PMV at the hospital site will be decreased by 0.9 compared to the actual conditions. The study proves that appropriate green space strategies can reduce thermal loads occurring due to global climate change and improve the thermal conditions in the study area.
Disciplines :
Architecture
Author, co-author :
Borna, Reza; Department of Geography, Ahvaz Branch, Islamic Azad University, Ahvaz 68875, Iran
Roshan, Gholamreza; Department of Geography, Golestan University, Gorgan 49138-15759, Iran
Moghbel, Masoumeh ; Faculty of Geography, University of Tehran, Tehran 14178-53933, Iran
Szabó, György ; Department of Landscape Protection and Environmental Geography, University of Debrecen, 4032 Debrecen, Hungary
Ata, Behnam; Department of Social Geography and Regional Development, University of Debrecen, 4023 Debrecen, Hungary
Attia, Shady ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments
Language :
English
Title :
Mitigation of Climate Change Impact on Bioclimatic Conditions Using Different Green Space Scenarios: The Case of a Hospital in Gorgan Subtropical Climates
Xu H. Shi T. Wang M. Fang C. Lin Z. Predicting effect of forthcoming population growth–induced impervious surface increase on regional thermal environment: Xiong'an New Area, North China Build. Environ. 2018 136 98 106 10.1016/j.buildenv.2018.03.035
Cirrincione L. Marvuglia A. Scaccianoce G. Assessing the effectiveness of green roofs in enhancing the energy and indoor comfort resilience of urban buildings to climate change: Methodology proposal and application Build. Environ. 2021 205 108198 10.1016/j.buildenv.2021.108198
Ghanghermeh A. Roshan G. Orosa J.A. Calvo-Rolle J.L. Costa Á.M. New climatic indicators for improving urban sprawl: A case study of Tehran city Entropy 2013 15 999 1013 10.3390/e15030999
Heaviside C. Macintyre H. Vardoulakis S. The Urban Heat Island: Implications for Health in a Changing Envi-Ronment Curr. Environ. Health Rep. 2017 4 296 305 10.1007/s40572-017-0150-3 28695487
Atwa S. Ibrahim M.G. Murata R. Evaluation of plantation design methodology to improve the human thermal comfort in hot-arid climatic responsive open spaces Sustain. Cities Soc. 2020 59 102198 10.1016/j.scs.2020.102198
Nitidara N.P.A. Sarwono J. Suprijanto S. Soelami F.N. The multisensory interaction between auditory, visual, and thermal to the overall comfort in public open space: A study in a tropical climate Sustain. Cities Soc. 2021 78 103622 10.1016/j.scs.2021.103622
Sattayakorn S. Ichinose M. Sasaki R. Clarifying thermal comfort of healthcare occupants in tropical region: A case of indoor environment in Thai hospitals Energy Build. 2017 149 45 57 10.1016/j.enbuild.2017.05.025
Yuan F. Yao R. Sadrizadeh S. Li B. Cao G. Zhang S. Zhou S. Liu H. Bogdan A. Croitoru C. et al. Thermal comfort in hospital buildings – A literature review J. Build. Eng. 2021 45 103463 10.1016/j.jobe.2021.103463
Kenny G.P. Yardley J. Brown C. Sigal R.J. Jay O. Heat stress in older individuals and patients with common chronic diseases Can. Med Assoc. J. 2009 182 1053 1060 10.1503/cmaj.081050
Pereira P.F.d.C. Broday E.E. Xavier A.A.d.P. Thermal Comfort Applied in Hospital Environments: A Literature Review Appl. Sci. 2020 10 7030 10.3390/app10207030
Berardi B.M. Leoni E. Indoor air climate and microbiological airborne: Contamination in various hospital areas Int. J. Hyg. Environ. Med. 1993 194 405 418
Nematchoua M.K. Yvon A. Kalameu O. Asadi S. Choudhary R. Reiter S. Impact of climate change on demands for heating and cooling energy in hospitals: An in-depth case study of six islands located in the Indian Ocean region Sustain. Cities Soc. 2019 44 629 645 10.1016/j.scs.2018.10.031
Ulrich R.S. Cordoza M. Gardiner S.K. Manulik B.J. Fitzpatrick P.S. Hazen T.M. Perkins R.S. ICU Patient Family Stress Recovery During Breaks in a Hospital Garden and Indoor Environments HERD Health Environ. Res. Des. J. 2020 13 83 102 10.1177/1937586719867157
Matzarakis A. Rutz F. Mayer H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model Int. J. Biometeorol. 2007 51 323 334 10.1007/s00484-006-0061-8
Matzarakis A. Rutz F. Mayer H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model Int. J. Biometeorol. 2010 54 131 139 10.1007/s00484-009-0261-0 19756771
Thorsson S. Lindberg F. Eliasson I. Holmer B. Different methods for estimating the mean radiant temperature in an outdoor urban setting Int. J. Climatol. 2007 27 1983 1993 10.1002/joc.1537
Andrade H. Alcoforado M.-J. Microclimatic variation of thermal comfort in a district of Lisbon (Telheiras) at night Theor. Appl. Clim. 2008 92 225 237 10.1007/s00704-007-0321-5
Chen Y.-C. Lin T.-P. Matzarakis A. Comparison of Mean Radiant Temperature from Field Experiment and Model-Ling: A Case Study in Freiburg, Germany Theor. Appl. Climatol. 2014 118 535 551 10.1007/s00704-013-1081-z
Hwang R.-L. Lin T.-P. Matzarakis A. Seasonal effects of urban street shading on long-term outdoor thermal comfort Build. Environ. 2011 46 863 870 10.1016/j.buildenv.2010.10.017
Krüger E.L. Minella F.O. Matzarakis A. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies Int. J. Biometeorol. 2014 58 1727 1737 10.1007/s00484-013-0777-1
Lee H. Mayer H. Validation of the Mean Radiant Temperature Simulated by the RayMan Software in Urban Environments Int. J. Biometeorol. 2016 60 1775 1785 10.1007/s00484-016-1166-3 27061289
Naboni E. Meloni M. Makey C. Kaempf J. The Simulation of Mean Radiant Temperature in Outdoor Conditions: A review of Software Tools Capabilities Proceedings of the Building Simulation Conference Proceedings, International Building Performance Simulation Association Rome, Italy 2–4 September 2019 10.26868/25222708.2019.210301
Alijani B. Climate of Iran Payame Noor University Tehran, Iran 1996
Soltani S. Saboohi R. Yaghmaei L. Rainfall and rainy days trend in Iran Clim. Chang. 2012 110 187 213 10.1007/s10584-011-0146-1
Roshan G. Ghanghermeh A. Attia S. Determining new threshold temperatures for cooling and heating degree day index of different climatic zones of Iran Renew. Energy 2017 101 156 167 10.1016/j.renene.2016.08.053
Roshan G. Moghbel M. Attia S. Evaluating the wind cooling potential on outdoor thermal comfort in selected Iranian climate types J. Therm. Biol. 2020 92 102660 10.1016/j.jtherbio.2020.102660 32888564
Roshan G. Farrokhzad M. Attia S. Climatic clustering analysis for novel atlas mapping and bioclimatic design recommendations Indoor Built Environ. 2021 30 313 333 10.1177/1420326X19888572
ESRI How Hot Spot Analysis: Getis-Ord Gi*(Spatial Statistics) Works 2009 Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 1 February 2023)
Roshan G.R. Sarli R. Grab S.W. The Case of Tehran’s Urban Heat Island, Iran: Impacts of Urban ‘Lockdown’ Associated with the COVID-19 Pandemic Sustain. Cities Soc. 2021 75 103263 10.1016/j.scs.2021.103263
Grigoraș G. Urițescu B. Spatial Hotspot Analysis of Bucharest’s Urban Heat Island (UHI) Using Modis Data Ann. Valahia Univ. Targoviste Geogr. Ser. 2018 18 14 22 10.2478/avutgs-2018-0002
Taleghani M. Tenpierik M. van den Dobbelsteen A. Sailor D.J. Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in The Netherlands Sol. Energy 2014 103 108 124 10.1016/j.solener.2014.01.033
Yang J. Shi B. Xia G. Xue Q. Cao S.-J. Impacts of Urban Form on Thermal Environment Near the Surface Region at Pedestrian Height: A Case Study Based on High-Density Built-Up Areas of Nanjing City in China Sustainability 2020 12 1737 10.3390/su12051737
Yang J. Wang Y. Xiu C. Xiao X. Xia J. Jin C. Optimizing local climate zones to mitigate urban heat island effect in human settlements J. Clean. Prod. 2020 275 123767 10.1016/j.jclepro.2020.123767
Yahia M.W. Johansson E. Thorsson S. Lindberg F. Rasmussen M.I. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania Int. J. Biometeorol. 2018 62 373 385 10.1007/s00484-017-1380-7 28612254
Darbani E.S. Parapari D.M. Boland J. Sharifi E. Impacts of urban form and urban heat island on the outdoor thermal comfort: A pilot study on Mashhad Int. J. Biometeorol. 2021 65 1101 1117 10.1007/s00484-021-02091-3 33604740
Gusson C.S. Duarte D.H. Effects of Built Density and Urban Morphology on Urban Microclimate - Calibration of the Model ENVI-met V4 for the Subtropical Sao Paulo, Brazil Procedia Eng. 2016 169 2 10 10.1016/j.proeng.2016.10.001
Simon H. Lindén J. Hoffmann D. Braun P. Bruse M. Esper J. Modeling transpiration and leaf temperature of urban trees—A case study evaluating the microclimate model ENVI-met against measurement data Landsc. Urban Plan. 2018 174 33 40 10.1016/j.landurbplan.2018.03.003
Yang J. Hu X. Feng H. Marvin S. Verifying an ENVI-met simulation of the thermal environment of Yanzhong Square Park in Shanghai Urban For. Urban Green. 2021 66 127384 10.1016/j.ufug.2021.127384
Dyvia H. Arif C. Analysis of Thermal Comfort with Predicted Mean Vote (PMV) Index Using Artificial Neural Net-Work Proceedings of the IOP Conference Series: Earth and Environmental Science IOP Publishing Bristol, UK 2021
Fanger P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering Thermal Comfort. Analysis and Applications in Environmental Engineering Cab Direct Glasgow, UK 1970
Mayer H. Urban bioclimatology Experientia 1993 49 957 963 10.1007/BF02125642
Coccolo S. Kämpf J. Scartezzini J.-L. Pearlmutter D. Outdoor Human Comfort and Thermal Stress: A Compre-Hensive Review on Models and Standards Urban. Clim. 2016 18 33 57 10.1016/j.uclim.2016.08.004
Salata F. Golasi I. Lieto Vollaro A. Lieto Vollaro R. How High Albedo and Traditional “buildings” Materials and Vegetation Affect the Quality of Urban Microclimate. A Case Study Energy Build. 2015 99 32 49 10.1016/j.enbuild.2015.04.010
El-Bardisy W.M. Fahmy M. El-Gohary G.F. Climatic Sensitive Landscape Design: Towards a Better Microclimate through Plantation in Public Schools, Cairo, Egypt Procedia Soc. Behav. Sci. 2016 216 206 216 10.1016/j.sbspro.2015.12.029
Barakat A. Ayad H. El-Sayed Z. Urban design in favor of human thermal comfort for hot arid climate using advanced simulation methods Alex. Eng. J. 2017 56 533 543 10.1016/j.aej.2017.04.008
Nasrollahi N. Hatami M. Khastar S.R. Taleghani M. Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate Sustain. Cities Soc. 2017 35 449 467 10.1016/j.scs.2017.08.017
Karakounos I. Dimoudi A. Zoras S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort Energy Build. 2018 158 1266 1274 10.1016/j.enbuild.2017.11.035
Perini K. Chokhachian A. Auer T. Green Streets to Enhance Outdoor Comfort. Nature Based Strategies for Urban and Building Sustainability Elsevier Amsterdam, The Netherlands 2018 119 129
Remund J. Müller S. Kunz S. Huguenin-Landl B. Studer C. Klauser D. Schilter C. Lehnherr R. Meteonorm Handbook Part I: Software Meteotest AG Bern, Switzerland 2010
Remund J. Grossenbacher U. Urban climate scenario data for European cities J. Phys. Conf. Ser. 2019 1343 012019 10.1088/1742-6596/1343/1/012019
Ababaei B. Mirzaei F. Sohrabi, T. Assessment of LARS-WG performance in 12 coastal stations of Iran Water Res. J. 2012 9 217 222
Morakinyo T.E. Kong L. Lau K.K.-L. Yuan C. Ng E. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort Build. Environ. 2017 115 1 17 10.1016/j.buildenv.2017.01.005
Forouzandeh A. Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings Sustain. Cities Soc. 2018 36 327 345 10.1016/j.scs.2017.07.025
López-Cabeza V. Galán-Marín C. Rivera-Gómez C. Roa-Fernández J. Courtyard microclimate ENVI-met outputs deviation from the experimental data J. Affect. Disord. 2018 144 129 141 10.1016/j.buildenv.2018.08.013
Fahmy M. Mahdy M. Mahmoud S. Abdelalim M. Ezzeldin S. Attia S. Influence of urban canopy green coverage and future climate change scenarios on energy consumption of new sub-urban residential developments using coupled simu-lation techniques: A case study in Alexandria, Egypt Energy Rep. 2020 6 638 645 10.1016/j.egyr.2019.09.042
Karimi A. Sanaieian H. Farhadi H. Norouzian-Maleki S. Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park Energy Rep. 2020 6 1670 1684 10.1016/j.egyr.2020.06.015
Abdi B. Hami A. Zarehaghi D. Impact of small-scale tree planting patterns on outdoor cooling and thermal comfort Sustain. Cities Soc. 2020 56 102085 10.1016/j.scs.2020.102085
Gasper A.L. Grittz G.S. Russi C.H. Schwartz C.E. Rodrigues A.V. Expected Impacts of Climate Change on Tree Ferns Distribution and Diversity Patterns in Subtropical Atlantic Forest Perspect. Ecol. Conserv. 2021 19 369 378 10.1016/j.pecon.2021.03.007
Brown R.D. Vanos J. Kenny N. Lenzholzer S. Designing urban parks that ameliorate the effects of climate change Landsc. Urban Plan. 2015 138 118 131 10.1016/j.landurbplan.2015.02.006
Gaitani N. Mihalakakou G. Santamouris M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces Build. Environ. 2007 42 317 324 10.1016/j.buildenv.2005.08.018