The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.
climate change, Congo basin, leaf traits, understory woody species
Abstract :
Background and aims – While tropical forests play an important role in carbon sequestration, they are assumed to
be sensitive to rising temperatures and prolonged drought. Plant functional traits are useful for understanding and
predicting the effects of such changes in plant communities. Here, we analyse the variation of leaf traits of understory
woody species of the Congo Basin rainforests over a 60-year period using herbaria as tools and we verify if this variation
is potentially related to recent climate change.
Material and methods – Leaves of five shrub species were collected in 2019–2022 in Congolese old-growth forests
(Yangambi Biosphere Reserve, DR Congo) from different positions on the shrub. These leaves were compared with
herbarium specimens collected in the same area before 1960. For both periods, we assessed leaf size, specific leaf area,
stomatal size, and stomatal density for all species.
Key results – The variability of the functional traits of the understory woody species are independent of the position of
the leaves in the crown. This allows for the use of historic herbarium collections for trait analyses on tropical understory
shrubs. The traits of the recently collected leaves were notably different from the traits of herbarium leaves collected in
pre-1960: recent leaves were significantly larger, had a higher Specific Leaf Area, a smaller stomata pore length, and, apart
from Coffea canephora, showed a lower stomatal density.
Conclusion – The difference in traits over time is probably related to the increase in temperature and to atmospheric CO2
concentration, as the average temperature at Yangambi over the past 60 years has shown an upward trend consistent with
global increasing CO2 levels, while the average annual rainfall has remained unchanged. Our results provide a first insight
into the response of forest species to climate change in the Congo Basin forests, and on how the understory species and
the ecosystem will react in the long term, when the temperature further increases.
Lassois, Ludivine ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Vandelook, Filip
Language :
English
Title :
Leaf traits of understory woody species in the Congo Basin forests changed over a 60-year period
Publication date :
2023
Journal title :
Plant Ecology and Evolution
ISSN :
2032-3913
eISSN :
2032-3921
Publisher :
Nationale Plantentuin van België, Belgium
Volume :
156
Issue :
3
Pages :
339-351
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
13. Climate action
Funders :
CIFOR - Centre for International Forestry Research ERAIFT - Regional Post-Graduate Training School on Integrated Management of Tropical Forests and Lands
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alongo S, Visser M, Kombele F, Colinet G, Alongo S, Visser M, Kombele F, Colinet G, Bogaert J (2013) Propriétés et diagnostic de l’état agropédologique du sol de la série Yakonde après fragmentation de la forêt à Yangambi, R.D. Congo. Annales des instituts supérieurs d’études agronomiques 5: 36–51. https://doi.org/hal-00875748
Alonso-Rodríguez AM, Wood TE, Torres-Díaz J, Cavaleri MA, Reed SC, Bachelot B (2022) Understory plant communities show resistance to drought, hurricanes, and experimental warming in a wet tropical forest. Frontiers in Forests and Global Change 5: 733967. https://doi.org/10.3389/ffgc.2022.733967
Amani C (2011) Vegetation patterns and role of edaphic heterogeneity on plant communities in semi-deciduous forests from the Congo Basin. PhD Thesis, Université Libre de Bruxelles, Belgium.
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01
Bauters M, Meeus S, Barthel M, Stoffelen P, De Deurwaerder HPT, Meunier F, Drake TW, Ponette Q, Ebuy J, Vermeir P, Beeckman H, Bodé S, Verbeeck H, Vandelook F, Boeckx P (2020) Century-long apparent decrease in intrinsic water-use efficiency with no evidence of progressive nutrient limitation in African tropical forests. Global Change Biology 26: 4449–4461. https://doi.org/10.1111/gcb.15145
Beerling D, Chaloner WG (1993) The impact of atmospheric CO2 and temperature change on stomatal density: observations from Quercus robur lammas leaves. Annals of Botany 71: 231–235. https://doi.org/10.1006/anbo.1993.1029
Bellard L, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377. https://doi. org/10.1111/j.1461-0248.2011.01736.x
Bertolino LT, Caine RS, Gray JE, Gray JE (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Sciences 10: 1–11. https://doi.org/10.3389/fpls.2019.00225
Bonal D, Ponton S, Le Thiec D, Richard B, Ningre N, Hérault B, Ogée J, Gonzalez S, Pignal M, Sabatier D, Guehl JM (2011) Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: A historical δ13C and δ18O approach using herbarium samples. Plant, Cell & Environment 34: 1332–1344. https://doi.org/10.1111/j.1365-3040.2011.02333.x
Bretfeld M, Ewers BE, Hall JS (2018) Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytologist 219: 885–899. https://doi.org/10.1111/nph.15071
Camargo MAB, Marenco RA (2011) Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazonica 41: 205–212. https://doi.org/10.1590/S0044-59672011000200004
De Boer HJ, Price CA, Wagner-cremer F, Dekker SC, Franks PJ, Veneklaas EJ (2016) Optimal allocation of leaf epidermal area for gas exchange. New Phytologist 210: 1219–1228. https://doi.org/10.1111/nph.13929
Djinet A, Bell J, Nana R, Mberdoum M, Tamini Z (2016) Évaluation des caractéristiques des stomates chez le palmier à huile (Elaeis guineensis Jacq.). Journal of Applied Biosciences 104: 9904–9910. https://doi.org/10.4314/jab.v104i1.2
Ebuy J, Mate J-P, Mukandama J-P, Ponette Q (2016) Chute des litières et fertilité des sols sous plantations forestières dans le bassin du Congo: cas de la station I.N.E.R.A/Yangambi en R.D.C. Journal of Animal & Plant Sciences 31: 4843–4861.
Ellsworth D, Reich P (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169–178. https://doi. org/10.1007/BF00317729
Fanourakis D, Giday H, Milla R, Pieruschka R, Kjaer KH, Bolger M, Vasilevski A, Nunes-Nesi A, Fiorani F, Ottosen C-O (2015) Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Annals of Botany 115(4): 555–565. https://doi.org/10.1093/aob/mcu247
Fortunel C, Stahl C, Heuret P, Nicolini E, Baraloto C (2020) Disentangling the effects of environment and ontogeny on tree functional dimensions for congeneric species in tropical forests. New Phytologist 226: 385–395. https://doi. org/10.1111/nph.16393
Fox J, Weisberg S (2018) An R Companion to Applied Regression. Third edition. SAGE Publications, Thousand Oaks, 1–608. https://us.sagepub.com/en-us/nam/an-r-companion-to-applied-regression/book246125 [accesed 21.09.2023]
Franks P, Drake P, Beerling D (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment 32: 1737– 1748. https://doi.org/10.1111/j.1365-3040.2009.002031.x
Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences 106: 10343–1034. https://doi.org/10.1073/pnas.0904209106
Gao J, Wang K, Zhang X (2022) Patterns and drivers of community specific leaf area in China. Global Ecology and Conservation 33: e01971. https://doi.org/10.1016/j. gecco.2021.e01971
Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 423: 901– 908. https://doi.org/10.1038/nature01843
Hoffmann WA, Franco AC, Moreira MZ, Haridasan M (2005) Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Functional Ecology 19: 932–940. https://doi.org/10.1111/j.1365-2435.2005.01045.x
Hollinger D (1989) Canopy organization and foliage photosynthetic capacity in a broad-leaved evergreen montane forest. Functional Ecology 3: 53–62. https://doi. org/10.2307/2389675
Hovenden MJ (2001) The influence of temperature and genotype on the growth and stomatal morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae). Australian Journal of Botany 49: 427–434. https://doi. org/10.1071/BT01001
Hubau W, De Mil T, Van den Bulcke J, Phillips O, Ilondea B, Van Acker J, Sullivan M, Nsenga L, Toirambe B, Couralet C, Banin L, Baker T, Yakusu E, Lopez-Gonzalez G, Makana J, Poulsen J, Reitsma J, Rousseau M, Sonké B, Sunderland T (2019) The persistence of carbon in the African forest understory. Nature Plants 5: 133–140. https://doi. org/10.1038/s41477-018-0316-5
Hultine R, Marshall D (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32–40. https://doi.org/10.1007/s004420050986
Guo Z, Lin H, Chen S, Yang Q (2018) Altitudinal patterns of leaf traits and leaf allometry in bamboo Pleioblastus amarus. Frontiers in Plant Science 9: 1110. https://doi.org/10.3389/fpls.2018.01110
Kafuti C, Bourland N, De Mil T, Meeus S, Rousseau M, Toirambe B, Bolaluembe P, Ndjele L, Beeckman H (2020) Foliar and wood traits covary along a vertical gradient within the crown of long-lived light-demanding species of the Congo Basin semi-deciduous forest. Forests 11: 35. https://doi.org/10.3390/f11010035
Kappelle M, Van Vuuren MMI, Baas P (1999) Effects of climate change on biodiversity: a review and identification of key research issues. Biodiversity and Conservation 8: 1383–1397. https://doi.org/10.1023/a:1008934324223
Kazadi S, Fukunyama K (1996) Interannual and long-term climate variability over the Zaire River Basin during the last 30 years. Journal of Geophysical Research 101: 351–360. https://doi.org/10.1029/96JD01869
Kearsley E, Verbeeck H, Hufkens K, Van de Perre F, Doetterl S, Baert G, Beeckman H, Boeckx P, Huygens D (2017) Functional community structure of African monodominant Gilbertiodendron dewevrei forest influenced by local environmental filtering. Ecology and Evolution 7: 295–304. https://doi.org/10.1002/ece3.2589
Koffi N, Barima Y, Angaman D, Dongui B (2014) Les caractéristiques des stomates des feuilles de Ficus benjamina L. comme bioindicateurs potentiels de la qualité de l’air dans la ville d’Abidjan (Côte d’Ivoire). Journal of Applied Biosciences 78: 6675–6684. https://doi.org/10.4314/jab. v78i0.12
Lewandowska M, Jarvis P (1977) Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in Sitka spruce, in response to shading and season. New Phytologist 79: 247–256. https://doi. org/10.1111/j.1469-8137.1977.tb02202.x
Lewis S, Lopez-Gonzalez G, Sonké B, Feldpausch T, Hamilton A, Gloor M, Hart T, Hladik A, Ewango C, Taplin J, Taylor D, Thomas S, Votere R, Wöll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457: 1003– 1007. https://doi.org/10.1038/nature07771
Likoko B, Mbifo N, Besango L, Totiwe T, Badjoko D, Likoko A, Botomo A, Litemandia Y, Posho N, Alongo L, Boyemba F (2019) Climate change for Yangambi forest region, DR Congo. Journal of Aquatic Sciences and Oceanography 1: 1–10.
Maley J (2004) Les variations de la végétation et des paléoenvironnements du domaine forestier africain au cours du quaternaire récent. In: Renault-Miskovsky J, Sémah A-M (Eds) Guide de Préhistoire Mondiale. Art’Com/Errance, Paris, 143–178.
Maley J, Doumenge C, Giresse P, Mahé G, Philippon N, Hubau W, Lokonda MO (2018) Late Holocene forest contraction and fragmentation in central Africa. Quaternary Research 89: 43–59. https://doi.org/10.1017/qua.2017.97
Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society B 359: 311–329. https://doi.org/10.1098/rstb.2003.1433
Mcclean CJ, Lovett JC, Kü W, Hannah L, Sommer JH, Barthlott W, Termansen M, Smith GF, Tokumine S, Taplin JRD (2005) African plant diversity and climate change. Annals of the Missouri Botanical Garden 92: 139–152. https://www.jstor. org/stable/3298511
Mohymont B, Demarée G (2006) Courbes intensité – durée – fréquence des précipitations à Yangambi, Congo, au moyen de différents modèles de type Montana. Hydrological Sciences 51: 239–253. https://doi.org/10.1623/hysj.51.2.239
Niklaus P, Schmid B, Li X, Pei K, Ke M (2017) Decomposing functional trait associations in a Chinese subtropical forest. PLoS ONE 12: e0175727. https://doi.org/10.1371/journal. pone.0175727
Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340: 741–744. https://doi.org/10.1126/science.1231574
Pan Y, Richard A, Birdsey JF, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333: 988–993. https://doi. org/10.1126/science.1201609
Peñuelas J, Matamala R (1990) Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. Journal of Experimental Botany 41: 1119–1124. https://doi. org/10.1093/jxb/41.9.1119
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Cornwell W, Craine J, Gurvich D, Urcelay C, Veneklaas E, Reich P, Poorter L, Wright I, Ray P, Enrico L, Pausas J, Vos A, Buchmann N, Funes G, Hodgson J, Thompson K, Morgan H, Steege H, Heijden M, Sack L, Blonder B, Poschlod P, Vaieretti M, Conti G, Staver A, Aquino S, Cornelissen J (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234. https://doi.org/10.1071/BT12225
Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87: 1289–1301. https://doi.org/10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2
Rahman M, Islam M, Bräuning A (2019) Species-specific growth resilience to drought in a mixed semi-deciduous tropical moist forest in South Asia. Forest Ecology and Management 433: 487–496. https://doi.org/10.1016/j.foreco.2018.11.034
Reich P, Walters M, Kloeppel B, Ellsworth D (1995) Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia 104: 24–30. https://doi.org/10.1007/BF00365558
Royer D (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114: 1–28. https://doi. org/10.1016/S0034-6667(00)00074-9
Royo A, Carson W (2006) On the formation of dense understory layers in forests worldwide: Consequences and implications for forest dynamics, biodiversity, and succession. Canadian Journal of Forest Research 36: 1345–1362. https://doi. org/10.1139/X06-025
Schmitt S, Trueba S, Coste S, Ducouret, Tysklind N, Heuertz M, Bonal D, Burban B, Hérault B, Derroire G (2022) Seasonal variation of leaf thickness: an overlooked component of functional trait variability. Plant Biology 24: 458–463. https://doi.org/10.1111/plb.13395
Shipley B (1995) Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology 9: 312–319. https://doi. org/10.2307/2390579
van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2014) No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience 8: 24–28. https://doi.org/10.1038/ngeo2313
Soudzilovskaia N, Elumeeva T, Onipchenko V, Shidakov I (2013) Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences 110: 18180–18184. https://doi.org/10.1073/pnas.1310700110
Ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho C V., Magnusson WE, Molino JF, Monteagudo A, Vargas PN, Montero JC, Feldpausch TR, Coronado ENH, Killeen TJ, Mostacedo B, Vasquez R, Assis RL, Terborgh J, Wittmann F, Andrade A, Laurance WF, Laurance SGW, Marimon BS, Marimon BH, Vieira ICG, Amaral IL, Brienen R, Castellanos H, López DC, Duivenvoorden JF, Mogollón HF, Matos FDDA, Dávila N, García-Villacorta R, Diaz PRS, Costa F, Emilio T, Levis C, Schietti J, Souza P, Alonso A, Dallmeier F, Montoya AJD, Piedade MTF, Araujo-Murakami A, Arroyo L, Gribel R, Fine PVA, Peres CA, Toledo M, Aymard C. GA, Baker TR, Cerón C, Engel J, Henkel TW, Maas P, Petronelli P, Stropp J, Zartman CE, Daly D, Neill D, Silveira M, Paredes MR, Chave J, Lima Filho DDA, Jørgensen PM, Fuentes A, Schöngart J, Valverde FC, Di Fiore A, Jimenez EM, Mora MCP, Phillips JF, Rivas G, Van Andel TR, Von Hildebrand P, Hoffman B, Zent EL, Malhi Y, Prieto A, Rudas A, Ruschell AR, Silva N, Vos V, Zent S, Oliveira AA, Schutz AC, Gonzales T, Nascimento MT, Ramirez-Angulo H, Sierra R, Tirado M, Medina MNU, Van Der Heijden G, Vela CIA, Torre EV, Vriesendorp C, Wang O, Young KR, Baider C, Balslev H, Ferreira C, Mesones I, Torres-Lezama A, Giraldo LEU, Zagt R, Alexiades MN, Hernandez L, Huamantupa-Chuquimaco I, Milliken W, Cuenca WP, Pauletto D, Sandoval EV, Gamarra LV, Dexter KG, Feeley K, Lopez-Gonzalez G, Silman MR (2013) Hyperdominance in the Amazonian tree flora. Science 342. https://doi.org/10.1126/science.1243092
Tarelkin Y, Delvaux C, De Ridder M, El Berkani T, De Cannière C, Beeckman H (2016) Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA Journal 37: 275–294. https://doi.org/10.1163/22941932-20160134
Tian M, Yu G, He N, Hou J (2016) Leaf morphological and anatomical traits from tropical to temperate coniferous forests: mechanisms and influencing factors. Scientific Reports 6: 19703. https://doi.org/10.1038/srep19703
Tng D, Apgaua D, Ishida Y, Lloyd J, Laurance W, Laurance S (2018) Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution 8: 12479–12491. https://doi.org/10.1002/ece3.4601
Woodward F (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617–618. https://doi.org/10.1038/327617a0
Woodward F, Lake J, Quick W (2002) Stomatal development and CO2: ecological consequences. New Phytologist 153: 477–484. https://doi.org/10.1046/j.0028-646X.2001.00338.x
Woodward FI (1986) Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia 70: 580–586. https://doi.org/10.1007/BF00379908
Wright I, Reich P, Westoby M, Ackerly D, Baruch Z, Bongers F, Cavender-bares J, Chapin T, Cornelissen J, Diemer M, Flexas J, Garnier E, Groom P, Gulias J (2004) The worldwide leaf economics spectrum. Nature 428: 821–827. https://doi. org/10.1038/nature02403
Yakusu EK, Van Acker J, Van de Vyver H, Bourland N, Ndiapo JM, Likwela TB, Lokonda MWK, Van den Bulcke J, Beeckman H, Bauters M, Boeckx P, Verbeeck H, Demarée G, Jacobsen K, Meulenberghs F, Hubau W (2022) Six decades of ground-based climate monitoring indicate warming and increasing precipitation seasonality and intensity in Yangambi (central Congo basin). Preprint Research Square https://doi.org/10.21203/rs.3.rs-1968285/v1
Zelazowski P, Malhi Y, Huntingford C, Sitch S, Fisher JB (2011) Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society A 369: 137–160. https://doi.org/10.1098/rsta.2010.0238
Similar publications
Sorry the service is unavailable at the moment. Please try again later.