Abstract :
[en] Phosphorus (P) is an indispensable nutrient for agriculture. Recovery and recycling of phosphorus from waste streams is necessary to ensure a circular P economy and reduce dependence on disproportionately distributed mineral P resources. In this study, a new process called 'PULSE' is presented for the recovery of P from sewage sludge, which can handle high metal contents. The process involves drying of sludge prior to acidic leaching to overcome the challenge of solid-liquid separation at low pH and to reduce the overall material flows. Another key point of the process is the removal of metals using reactive extraction to obtain a high-quality product with good plant availability. Laboratory experiments were conducted to evaluate and select the best process options. A chemical equilibrium tool was developed to simulate the unit operations of the process for optimization. Dissolution of P from sludge depends on leaching pH and the fraction of inorganic P in the sludge. The maximum P leaching efficiency for the sludge used in the study was between 65 and 70%. Under the tested conditions, Fe, Cd, Cu, Hg, Pb, and Zn were successfully removed from the sludge leach liquor by reactive extraction. The recovered product has a nutrient mass fraction of about 51% that includes Ca, PO43-, Mg, and K. Pot trials confirmed that the agronomical efficiency of the product is comparable to that of triple superphosphate.
Funding text :
The research work was carried out as part of the PhosForYou project which received funding from the INTERREG VB North-West Europe Programme (2014–2020) under grant NWE292, as well as from the Service Public de Wallonie, and the University of Liège.
Scopus citations®
without self-citations
1