Article (Scientific journals)
The payload of the Lunar Gravitational-wave Antenna
van Heijningen, Joris; ter Brake, H.J.M.; Gerberding, Oliver et al.
2023In Journal of Applied Physics, 133 (24)
Peer Reviewed verified by ORBi
 

Files


Full Text
244501_1_5.0144687.pdf
Author postprint (3.3 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Black holes; Gravitational wave antennas; Gravitational-waves; Inertial sensor; Interferometric detectors; Interferometrics; Laser interferometer space antenna; Seismic station; Space missions; Physics and Astronomy (all); General Relativity and Quantum Cosmology; astro-ph.IM; General Physics and Astronomy
Abstract :
[en] The toolbox to study the Universe grew on 14 September 2015 when the LIGO-Virgo collaboration heard a signal from two colliding black holes between 30 and 250 Hz. Since then, many more gravitational waves have been detected as detectors continue to increase sensitivity. However, the current and future interferometric detectors will never be able to detect gravitational waves below a few Hz due to oceanic activity on Earth. An interferometric space mission, the laser interferometer space antenna, will operate between 1 mHz and 0.1 Hz, leaving a gap in the decihertz band. To detect gravitational-wave signals also between 0.1 and 1 Hz, the Lunar Gravitational-wave Antenna will use an array of seismic stations. The seismic array will be deployed in a permanently shadowed crater on the lunar south pole, which provides stable ambient temperatures below 40 K. A cryogenic superconducting inertial sensor is under development that aims for fm/ √ Hz sensitivity or better down to several hundred mHz, and thermal noise limited below that value. Given the 10 6 m size of the Moon, strain sensitivities below 10 − 20 1/ √ Hz can be achieved. The additional cooling is proposed depending on the used superconductor technology. The inertial sensors in the seismic stations aim to make a differential measurement between the elastic response of the Moon and the inertial sensor proof-mass motion induced by gravitational waves. Here, we describe the current state of research toward the inertial sensor, its applications, and additional auxiliary technologies in the payload of the lunar gravitational-wave detection mission.
Research center :
A&M - Aérospatiale et Mécanique - ULiège [BE]
Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain
Faculty of Science and Technology, University of Twente
Institut für Experimentalphysik, Universität Hamburg
Gran Sasso Science Institute (GSSI)
Institute of Mechanics, Chinese Academy of Sciences, Beijing
ESAT-MICAS, Katholieke Universiteit Leuven
National Institute of Subatomic Physics Nikhef
School of Pharmacy, Physics Unit, University of Camerino
INAF, I-62032 Camerino
School of Science and Technology, Physics Division, University of Camerino
Precision for document type :
Review article
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
van Heijningen, Joris ;  Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium
ter Brake, H.J.M. ;  Faculty of Science and Technology, University of Twente, Enschede, Netherlands
Gerberding, Oliver ;  Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Chalathadka Subrahmanya, Shreevathsa ;  Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Harms, Jan ;  Gran Sasso Science Institute (GSSI), L’Aquila, Italy
Bian, Xing ;  Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
Gatti, Alberto ;  ESAT-MICAS, Katholieke Universiteit Leuven, Leuven, Belgium
Zeoli, Morgane  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium
Bertolini, Alessandro ;  National Institute of Subatomic Physics Nikhef, Amsterdam, Netherlands
Collette, Christophe  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace structures and advanced mechanical systems
Perali, Andrea ;  School of Pharmacy, Physics Unit, University of Camerino, Camerino, Italy ; INAF, Camerino, Italy
Pinto, Nicola ;  School of Science and Technology, Physics Division, University of Camerino, Camerino, Italy
Sharma, Meenakshi ;  School of Science and Technology, Physics Division, University of Camerino, Camerino, Italy
Tavernier, Filip ;  ESAT-MICAS, Katholieke Universiteit Leuven, Leuven, Belgium
Rezvani, Javad ;  School of Science and Technology, Physics Division, University of Camerino, Camerino, Italy
More authors (5 more) Less
Language :
English
Title :
The payload of the Lunar Gravitational-wave Antenna
Publication date :
28 June 2023
Journal title :
Journal of Applied Physics
ISSN :
0021-8979
eISSN :
1089-7550
Publisher :
American Institute of Physics Inc.
Volume :
133
Issue :
24
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Lunar Gravitationnal-Wave Antenna
Funders :
DFG - Deutsche Forschungsgemeinschaft [DE]
Interreg North-West Europe [FR]
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
Funding number :
T.0022.22
Funding text :
Oliver Gerberding and Shreevathsa Chalathadka Subrahmanya are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2121 “Quantum Universe”—390833306. Filip Tavernier and Alberto Gatti are funded by internal KU Leuven Funds (iBOF-21-084). Filip Tavernier, Alberto Gatti, Christophe Collette, Joris van Heijningen, and this research are partially funded by Interreg V-A Euregio Maas-Rijn under the E-TEST project (EMR113). Morgane Zeoli is funded by the Fonds National de la Recherche Scientifique (FNRS) under projet de recherche STELLAR (T.0022.22).
Available on ORBi :
since 25 September 2023

Statistics


Number of views
18 (7 by ULiège)
Number of downloads
9 (4 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
1
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi