crop rotation; fertilization; paddy soils; soil organic carbon; the Yangtze River catchment; Environmental Science (all); General Environmental Science
Abstract :
[en] Enhancing soil organic carbon (SOC) stocks through fertilization and crop rotation will contribute to sustaining crop productivity and mitigating global warming. In this study, we analyzed the differences in total SOC stocks and their driving factors in the topsoil (0–20 cm) with various fertilization measures in two puddled lowland rice-based cropping systems (i.e., rice-wheat rotation and double rice rotation systems) over the last four decades from seven long-term experiments in the Yangtze River catchment. The soil types include Cambisol, Luvisol, and Anthrosol. The treatments include no fertilizer application (CK), application of chemical nitrogen, phosphorus and potassium fertilizers (NPK) and a combination of NPK and manure applications (NPKM). Every year, field was ploughed to a depth of 15–20 cm before wheat sowing and rice transplanting. Residue was removed after plant harvesting. Results showed that during the last four decades, the average crop grain yield ranged from 1,151 ± 504 kg ha−1 yr−1 under CK treatment to 7,553 ± 1,373 kg ha−1 yr−1 under NPKM treatment. The topsoil SOC stock significantly increased by 8.6 t ha−1 on average under NPKM treatment in rice-wheat system and by 2.5–6.4 t ha−1 on average under NPK and NPKM treatments in double rice system as compared with CK. A higher SOC sequestration rate and a longer SOC sequestration duration were found in NPKM treatment than that in NPK treatment in both cropping systems. The highest SOC stock ratio (SOC stock in fertilizer treatments to CK) was observed under the NPKM treatment in both cropping systems, though no significant difference was found between these two cropping systems. However, the fertilization-induced relative increase of the SOC stock was 109.5% and 45.8% under the NPK and NPKM treatments, respectively in the rice-wheat system than that in the double rice system. This indicates that the rice-wheat system is more conducive for SOC sequestration. RF and SEM analyses revealed that the magnitude and influencing factors driving SOC sequestration varied between two systems. In the double rice system, continuous flooding weakens the influence of precipitation on SOC sequestration and highlights the importance of soil properties and C input. In contrast, soil properties, C input and climate factors all have important impacts on SOC sequestration in rice-wheat system. This study reveals that the rice-wheat system is more favorable for SOC sequestration despite its lower C input compared to the double rice system in China’s paddies.
Disciplines :
Agriculture & agronomy
Author, co-author :
Wang, Shuhui ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Sun, Nan; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Liang, Shuo ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Shuxiang; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Meersmans, Jeroen ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Xu, Minggang; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China ; Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, China
Wu, Lianhai; Net Zero and Resilient Farming, Rothamsted Research, Okehampton, United Kingdom
Language :
English
Title :
SOC sequestration affected by fertilization in rice-based cropping systems over the last four decades
National Key Research and Development Program of China (2021YFD1901205)
Funders :
NSCF - National Natural Science Foundation of China
Funding text :
This study was supported by the National Key Research and Development Program of China (2021YFD1901205), the National Natural Science Foundation of China (42177341), SW was supported by the China Scholarship Council (No. 202103250053).
Atere C. T. Gunina A. Zhu Z. K. Xiao M. L. Liu S. L. Kuzyakov Y. et al. (2020). Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance. Soil Biol. biochem. 149, 107931. 10.1016/j.soilbio.2020.107931
Black C. A. (1965). Methods of soil analysis, part 2. Chemical and microbiological properties. Madison, Wisconsin, USA: American Society of Agronomy.
Brar B. S. Singh K. Dheri G. S. Kumar B. (2013). Carbon sequestration and soil carbon pools in a rice-wheat cropping system: Effect of long-term use of inorganic fertilizers and organic manure. Soil till. Res. 128, 30–36. 10.1016/j.still.2012.10.001
Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. 10.1023/A:1010933404324
Cai Z. Tsuruta H. Gao M. Xu H. Wei C. (2003). Options for mitigating methane emission from a permanently flooded rice field. Glob. Chang. Biol. 9, 37–45. 10.1046/j.1365-2486.2003.00562.x
Carlson K. Gerber J. Mueller N. Herrero M. MacDonald G. Brauman K. et al. (2017). Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68. 10.1038/nclimate3158
Cha-un N. Chidthaisong A. Yagi K. Sudo S. Towprayoon S. (2017). Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric. Ecosyst. Environ. 237, 109–120. 10.1016/j.agee.2016.12.025
Chen C. Q. Groenigen K. J. V. Yang H. Y. Hungate B. A. Yang B. Tian Y. L. et al. (2020). Global warming and shifts in cropping systems together reduce China's rice production. Glob. Food Secur. 24, 100359. 10.1016/j.gfs.2020.100359
Chen X. B. Hu Y. J. Xia Y. H. Zheng S. M. Ma C. Rui Y. C. et al. (2021). Contrasting pathways of carbon sequestration in paddy and upland soils. Glob. Chang. Biol. 27, 2478–2490. 10.1111/gcb.15595
Chen X. P. Cui Z. L. Fan M. S. Vitousek P. Zhao M. Ma W. Q. et al. (2014). Producing more grain with lower environmental costs. Nature 514, 486–489. 10.1038/nature13609
FAO (Food and Agriculture Organization of the United Nations) (2018). Faostat: FAO statistical databases. Available at: http://faostat.fao.org/default.aspx.
Feng J. F. Chen C. Q. Zhang Y. Song Z. W. Deng A. X. Zheng C. Y. et al. (2013). Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agric. Ecosyst. Environ. 164, 220–228. 10.1016/j.agee.2012.10.009
Follett R. F. (2001). Soil management concepts and carbon sequestration in cropland soils. Soil till. Res. 61, 77–92. 10.1016/S0167-1987(01)00180-5
Freeman C. Ostle N. Kang H. (2001). An enzymic 'latch' on a global carbon store. Nature 409, 149. 10.1038/35051650
Fujisaki K. Chevallier T. Lardy L. C. Albrecht A. Razafimbelo T. Masse D. et al. (2018). Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 259, 147–158. 10.1016/j.agee.2017.12.008
Gross A. Glaser B. (2021). Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 11, 5516. 10.1038/s41598-021-82739-7
Guo J. Song Z. F. Zhu Y. J. Wei W. Li S. N. Yu Y. L. (2017). The characteristics of yield-scaled methane emission from paddy field in recent 35-year in China: A meta-analysis. J. Clean. Prod. 161, 1044–1050. 10.1016/j.jclepro.2017.06.073
Hassink J. (1997). The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77–87. 10.1023/A:1004213929699
Hou P. F. Chien C. H. Chiang-Hsieh Y. F. Tseng K. C. Chow C. N. Huang H. J. et al. (2018). Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community. Sci. Rep. 8, 7966. 10.1038/s41598-018-26181-2
Hu X. Y. Huang Y. Sun W. J. Yu L. F. (2017). Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s. Agric. For. Meteorol. 247, 34–41. 10.1016/j.agrformet.2017.07.014
Huang J. Zhang Y. Z. Gao J. S. Zhang W. J. Liu S. J. (2015). Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil. J. Appl. Ecol. 26, 3373–3380. (in Chinese).
Huang S. Pan X. H. Guo J. Qian C. R. Zhang W. J. (2014). Differences in soil organic carbon stocks and fraction distributions between rice paddies and upland cropping systems in China. J. Soils Sediment. 14, 89–98. 10.1007/s11368-013-0789-9
Huang S. Sun Y. N. Zhang W. J. (2012). Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: A meta-analysis. Clim. Change 112, 847–858. 10.1007/s10584-011-0255-x
Hussain S. Huang J. Huang J. Ahmad S. Nanda S. Anwar S. et al. (2020). “Rice production under climate change: Adaptations and mitigating strategies,” in Environment, climate, plant and vegetation growth (Cham: Springer), 659–686. 10.1007/978-3-030-49732-3_26
Jastrow J. D. Amonette J. E. Bailey V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim. Change 80, 5–23. 10.1007/s10584-006-9178-3
Jiang G. Y. Xu M. He X. H. Zhang W. J. Huang S. M. Yang X. et al. (2014). Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Glob. Biogeochem. Cy. 28, 319–333. 10.1002/2013GB004746
Jiao S. Chen W. M. Wang J. L. Du N. N. Li Q. P. Wei G. H. (2018). Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146. 10.1186/s40168-018-0526-0
Kundu S. Bhattacharyya R. Prakash V. Ghosh B. N. Gupta H. S. (2007). Carbon sequestration and relationship between carbon addition and storage under rainfed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas. Soil till. Res. 92, 87–95. 10.1016/j.still.2006.01.009
Li B. Z. Song H. Cao W. C. Wang Y. J. Chen J. S. Guo J. H. (2021). Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Glob. Chang. Biol. 27, 5356–5367. 10.1111/gcb.15731
Liu C. Lu M. Cui J. Li B. Fang C. M. (2014). Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Glob. Chang. Biol. 20, 1366–1381. 10.1111/gcb.12517
Liu W. Zhang Q. Liu G. (2011). Effects of watershed land use and lake morphometry on the trophic state of Chinese lakes: Implications for eutrophication control. Clean. Soil Air Water 39, 35–42. 10.1002/clen.201000052
Liu Y. L. Ge T. D. van Groenigen K. J. Yang Y. H. Wang P. Cheng K. et al. (2021). Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun. Earth Environ 2, 154. 10.1038/s43247-021-00229-0
Liu Y. L. Ge T. D. Zhu Z. K. Liu S. L. Luo Y. Li Y. et al. (2019). Carbon input and allocation by rice into paddy soils: A review. Soil Biol. biochem. 133, 97–107. 10.1016/j.soilbio.2019.02.019
Lu F. Wang X. K. Han B. Ouyang Z. Y. Duan X. N. Zheng H. et al. (2009). Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland. Glob. Chang. Biol. 15, 281–305. 10.1111/j.1365-2486.2008.01743.x
Ma W. Z. Zhan Y. Chen S. C. Ren Z. Q. Chen X. J. Qin F. J. et al. (2021). Organic carbon storage potential of cropland topsoils in East China: Indispensable roles of cropping systems and soil managements. Soil till. Res. 211, 105052. 10.1016/j.still.2021.105052
Maillard É. Angers D. A. (2014). Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 20, 666–679. 10.1111/gcb.12438
Mandal B. Majumder B. Adhya T. K. Bandyopadhyay P. K. Gangopadhyay A. Sarkar D. et al. (2008). Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Glob. Chang. Biol. 14, 2139–2151. 10.1111/j.1365-2486.2008.01627.x
Marschner P. (2021). Processes in submerged soils-linking redox potential, soil organic matter turnover and plants to nutrient cycling. Plant Soil 464, 1–12. 10.1007/s11104-021-05040-6
Meersmans J. Van Wesemael B. Van Molle M. (2009). Determining soil organic carbon for agricultural soils: A comparison between the Walkley and black and the dry combustion methods (north Belgium). Soil Use Manage 25, 346–353. 10.1111/j.1475-2743.2009.00242.x
Mehmood I. Qiao L. Chen H. Q. Tang Q. Y. Woolf D. Fan M. S. (2020). Biochar addition leads to more soil organic carbon sequestration under a maize-rice cropping system than continuous flooded rice. Agric. Ecosyst. Environ. 298, 106965. 10.1016/j.agee.2020.106965
NCATS (1994). Chinese organic fertilizer handbook. Beijing, China: National Center for Agricultural Technology Service.
Pan G. X. Li L. Q. Wu L. S. Zhang X. H. (2003). Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92. 10.1111/j.1365-2486.2003.00717.x
Pan G. X. Zhao Q. G. (2005). Study on evolution of organic carbon stock in agricultural soils of China: Facing the challenge of global change and food security. Adv. earth Sci. 20, 384–393. 10.11867/j.issn.1001-8166.2005.04.0384
Piao S. Ciais P. Huang Y. Shen Z. H. Peng S. S. Li J. S. et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51. 10.1038/nature09364
Qiu H. S. Zheng X. D. Ge T. D. Dorodnikov M. Chen X. B. Hu Y. J. et al. (2017). Weaker priming and mineralisation of low molecular weight organic substances in paddy than in upland soil. Eur. J. Soil Biol. 83, 9–17. 10.1016/j.ejsobi.2017.09.008
Rui W. Y. Zhang W. J. (2010). Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze delta plain of China: A meta-analysis. Agric. Ecosyst. Environ. 135, 199–205. 10.1016/j.agee.2009.09.010
Schewe J. Heinke J. Gerten D. Haddeland I. Arnell N. W. Clark D. B. et al. (2014). Multimodel assessment of water scarcity under climate change. PNAS 111 (9), 3245–3250. 10.1073/pnas.1222460110
Six J. Conant R. T. Paul E. A. Paustian K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176. 10.1023/A:1016125726789
Six J. Elliott E. T. Paustian K. (2000). Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. biochem. 32, 2099–2103. 10.1016/S0038-0717(00)00179-6
Six J. Elliott E. T. Paustian K. Doran J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62, 1367–1377. 10.2136/sssaj1998.03615995006200050032x
Six J. Elliott T. Paustian K. (1999). Aggregate and soil organic matter dynamics under conventional and No‐tillage systems. Soil Sci. Soc. Am. J. 63, 1350–1358. 10.2136/sssaj1999.6351350x
Stewart C. E. Paustian K. Conant R. T. Plante A. F. Six J. (2007). Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry 86, 19–31. 10.1007/s10533-007-9140-0
Stewart C. E. Paustian K. Conant R. T. Plante A. F. Six J. (2008). Soil carbon saturation: Evaluation and corroboration by long-term incubations. Soil Biol. biochem. 40 (7), 1741–1750. 10.1016/j.soilbio.2008.02.014
Sun Y. N. Huang S. Yu X. C. Zhang W. J. (2015). Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant Soil 397, 189–200. 10.1007/s11104-015-2611-5
Tian K. Zhao Y. C. Xu X. H. Hai N. Huang B. Deng W. J. (2015). Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ. 204, 40–50. 10.1016/j.agee.2015.02.008
Toriyama K. Heong K. L. Hardy B. (2005). “Rice is life: Scientific perspectives for the 21 st century,” in Proceedings of the World Rice Research Conference, Tsukuba, Japan, November 4-7, 2004, 377–379.
Virto I. Barré P. Burlot A. Chenu C. (2012). Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108, 17–26. 10.1007/s10533-011-9600-4
Vomocil J. A. (1957). Measurement of soil bulk density and penetrability: A review of methods. Adv. Agron. 9, 159–175. 10.1016/S0065-2113(08)60112-1
Walkley A. Black I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38. 10.1097/00010694-193401000-00003
Wei L. Ge T. D. Zhu Z. K. Luo Y. Yang Y. H. Xiao M. L. et al. (2021). Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121. 10.1016/j.geoderma.2021.115121
Wei L. Ge T. D. Zhu Z. K. Ye R. Z. Peñuelas J. Li Y. H. et al. (2022). Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers. Agric. Ecosyst. Environ. 326, 107798. 10.1016/j.agee.2021.107798
Wen Z. L. Hau K. T. Marsh H. W. (2004). Structure equation model testing: Cutoff criteria for goodness of fit indices and chi-square test. Acta Psychol. Sin. 36, 186–194.
West T. O. Post W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis. Soil Sci. Soc. Am. J. 66, 1930–1946. 10.2136/sssaj2002.1930
West T. O. Six J. (2007). Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim. Change. 80, 25–41. 10.1007/s10584-006-9173-8
Wiesmeier M. Urbanski L. Hobley E. Lang B. von Lützow M. Marin-Spiotta E. et al. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 333, 149–162. 10.1016/j.geoderma.2018.07.026
Wissing L. Kölbl A. Häusler W. Schad P. Cao Z. H. Kögel-Knabner I. (2013). Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil till. Res. 126, 60–71. 10.1016/j.still.2012.08.004
Wissing L. Kölbl A. Schad P. Bräuer T. Cao Z. H. Kögel-Knabner I. (2014). Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 228-229, 90–103. 10.1016/j.geoderma.2013.12.012
Xu C. H. Xu X. Ju C. H. Chen H. Y. H. Wilsey B. J. Luo Y. Q. et al. (2021). Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Glob. Chang. Biol. 27, 1170–1180. 10.1111/gcb.15489
Xu M. G. Liang G. Q. Zhang F. D. (2006). Soil fertility evolution in China. Beijng, China: China Agricultural Science and Technology Press.
Yang C. M. Yang L. Z. Ouyang Z. (2005). Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes. Geoderma 124, 133–142. 10.1016/j.geoderma.2004.04.008
Yang X. Shang Q. Wu P. Liu J. Shen Q. Guo S. et al. (2010). Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China. Agric. Ecosyst. Environ. 137, 308–316. 10.1016/j.agee.2010.03.001
Yu Y. Guo Z. Wu H. Kahmann J. A. Oldfield F. (2009). Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Glob. Biogeochem. Cy. 23, GB2021. 10.1029/2008GB003428
Yue J. Shi Y. Liang W. Wu J. Wang C. R. Huang G. H. (2005). Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutr. Cycl. Agroecosyst. 73, 293–301. 10.1007/s10705-005-3815-5
Zhang T. Huang Y. Yang X. (2013). Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Glob. Chang. Biol. 19, 563–570. 10.1111/gcb.12057
Zhang Y. Jiang Y. Tai A. Feng J. F. Li Z. J. Zhu X. C. et al. (2019). Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ. Res. Lett. 14, 114020. 10.1088/1748-9326/ab488d
Zhao Y. C. Wang M. Y. Hu S. J. Zhang X. D. Ouyang Z. Zhang G. L. et al. (2018). Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. PNAS 115, 4045–4050. 10.1073/pnas.1700292114
Zhou W. Lv T. F. Chen Y. Westby A. P. Ren W. J. (2014). Soil physicochemical and biological properties of paddy-upland rotation: A review. Sci. World J. 2014, 1–8. 10.1155/2014/856352
Zhu L. Q. Li J. Tao B. R. Hu N. J. (2015). Effect of different fertilization modes on soil organic carbon sequestration in paddy fields in South China: A meta-analysis. Ecol. Indic. 53, 144–153. 10.1016/j.ecolind.2015.01.038