[en] [en] BACKGROUND: Improving the functional recovery of patients with DoC remains one of the greatest challenges of the field. Different theories exist about the role of the anterior (prefrontal areas) versus posterior (parietal areas) parts of the brain as hotspots for the recovery of consciousness. Repetitive transcranial magnetic stimulation (rTMS) is a powerful non-invasive brain stimulation technique for the treatment of DoC. However, a direct comparison of the effect of TMS treatment on the front versus the back of the brain has yet to be performed. In this study, we aim to assess the short- and long-term effects of frontal and parietal rTMS on DoC recovery and characterize responders phenotypically.
METHODS/DESIGN: Ninety patients with subacute and prolonged DoC will be included in a two-part multicenter prospective study. In the first phase (randomized controlled trial, RCT), patients will undergo four rTMS sessions in a crossover design over 10 days, targeting (i) the left dorsolateral prefrontal cortex (DLPFC) and (ii) the left angular gyrus (AG), as well as (iii & iv) their sham alternatives. In the second phase (longitudinal personalized trial), patients will receive personalized stimulations for 20 working days targeting the brain area that showed the best results in the RCT and will be randomly assigned to either active or sham intervention. The effects of rTMS on neurobehavioral and neurophysiological functioning in patients with DoC will be evaluated using clinical biomarkers of responsiveness (i.e., the Coma Recovery Scale-Revised; CRS-R), and electrophysiological biomarkers (e.g., power spectra, functional and effective connectivity, perturbational complexity index before and after intervention). Functional long-term outcomes will be assessed at 3 and 6 months post-intervention. Adverse events will be recorded during the treatment phase.
DISCUSSION: This study seeks to identify which brain region (front or back) is best to stimulate for the treatment of patients with DoC using rTMS, and to characterize the neural correlates of its action regarding recovery of consciousness and functional outcome. In addition, we will define the responders' profile based on patients' characteristics and functional impairments; and develop biomarkers of responsiveness using EEG analysis according to the clinical responsiveness to the treatment.
CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT04401319, Clinicaltrials.gov, n° NCT04401319.
Rosenfelder, Martin J; Department of Neurology, Therapiezentrum Burgau, Burgau, Germany ; Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
Cardone, Paolo ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Niimi, Masachika ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group ; Department of Rehabilitation Medicine, Nihon University School of Medicine, Tokyo, Japan
Willacker, Lina; Department of Neurology, Ludwig-Maximilians University Hospital of Munich, University of Munich, Munich, Germany
Thibaut, Aurore ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Lejeune, Nicolas ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group ; William Lennox Neurological Hospital, Ottignies-Louvain-la-Neuve, Belgium
Laureys, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau² ; CERVO Research Center, Laval University, Québec, QC, Canada
Bender, Andreas; Department of Neurology, Therapiezentrum Burgau, Burgau, Germany ; Department of Neurology, Ludwig-Maximilians University Hospital of Munich, University of Munich, Munich, Germany
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Language :
English
Title :
A protocol for a multicenter randomized and personalized controlled trial using rTMS in patients with disorders of consciousness.
BMBF - Federal Ministry of Education and Research ESA - European Space Agency BELSPO - Belgian Federal Science Policy Office Bial Foundation MSF - Mind Science Foundation FRB - King Baudouin Foundation
Funding text :
This work was supported by the ZNS Hannelore-Kohl Stiftung and the Federal Ministry of Education and Research (BMBF), the Belgian National Funds for Scientific Research (FRS-FNRS), FNRS project No PDR/BEJ T.0134.21, the University of Liège Conseil Sectoriel de la Recherche, the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the ERA-Net FLAG-ERA JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project), the European Space Agency (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the PRODEX Programme, the GIGA Doctoral School for Health Science, the BIAL Foundation, the Mind Science Foundation, the fund Generet of the King Baudouin Foundation, the Mind Care International foundation and AstraZeneca Foundation. SL is FNRS Research Director, OG and AT are FNRS Research Associates, NL is FNRS Post Doctorate Fellow, and MV and PC are FNRS Research Fellows.We would like to express our gratitude to the University and University Hospital of Liège, the patients and their families and the staff from the neurological center William Lennox (Belgium), the Therapiezentrum Burgau (Germany) and the Schön Klinik Bad Aibling-Harthausen (Germany) for their precious collaboration.
Laureys S Celesia GG Cohadon F Lavrijsen J León-Carrión J Sannita WG et al. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med. (2010) 8:2–5. doi: 10.1186/1741-7015-8-68
Bruno MA Vanhaudenhuyse A Thibaut A Moonen G Laureys S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol. (2011) 258:1373–84. doi: 10.1007/s00415-011-6114-x, PMID: 21674197
Giacino JT Ashwal S Childs N Cranford R Jennett B Katz DI et al. The minimally conscious state: definition and diagnostic criteria. Neurology. (2002) 58:349–53. doi: 10.1212/WNL.58.3.349
Thibaut A Schiff N Giacino J Laureys S Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. (2019) 18:600–14. doi: 10.1016/S1474-4422(19)30031-6, PMID: 31003899
Giacino JT Whyte J Bagiella E Kalmar K Childs N Khademi A et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. (2012) 366:819–26. doi: 10.1056/NEJMoa1102609, PMID: 22375973
Whyte J Myers R. Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial. Am J Phys Med Rehabil. (2009) 88:410–8. doi: 10.1097/PHM.0b013e3181a0e3a0, PMID: 19620954
Feng Y Zhang J Zhou Y Bai Z Yin Y. Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis. Rev Neurosci. (2020) 31:905–14. doi: 10.1515/revneuro-2020-0033, PMID: 32845870
Hallett M. Transcranial magnetic stimulation: a primer. Neuron. (2007) 55:187–99. doi: 10.1016/j.neuron.2007.06.026, PMID: 17640522
Niimi M Hashimoto K Kakuda W Miyano S Momosaki R Ishima T et al. Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke. PLoS One. (2016) 11:1–12. doi: 10.1371/journal.pone.0152241
Formica C De Salvo S Corallo F Alagna A Logiudice AL Todaro A et al. Role of neurorehabilitative treatment using transcranial magnetic stimulation in disorders of consciousness. J Int Med Res. (2021) 49:030006052097647. doi: 10.1177/0300060520976472, PMID: 33535855
Liu P Gao J Pan S Meng F Pan G Li J et al. Effects of high-frequency repetitive transcranial magnetic stimulation on cerebral hemodynamics in patients with disorders of consciousness: a sham-controlled study. Eur Neurol. (2016) 76:1–7. doi: 10.1159/000447325, PMID: 27332827
Pisani LR Naro A Leo A Aricò I Pisani F Silvestri R et al. Repetitive transcranial magnetic stimulation induced slow wave activity modification: a possible role in disorder of consciousness differential diagnosis? Conscious Cogn. (2015) 38:1–8. doi: 10.1016/j.concog.2015.09.012
Bai Y Xia X Kang J Yin X Yang Y He J et al. Evaluating the effect of repetitive transcranial magnetic stimulation on disorders of consciousness by using TMS-EEG. Front Neurosci. (2016) 10:473. doi: 10.3389/fnins.2016.00473
Piccione F Cavinato M Manganotti P Formaggio E Storti SF Battistin L et al. Behavioral and neurophysiological effects of repetitive transcranial magnetic stimulation on the minimally conscious state: a case study. Neurorehabil Neural Repair. (2011) 25:98–102. doi: 10.1177/1545968310369802, PMID: 20647501
Xu C Wu W Zheng X Liang Q Huang X Zhong H et al. Repetitive transcranial magnetic stimulation over the posterior parietal cortex improves functional recovery in nonresponsive patients: a crossover, randomized, double-blind, sham-controlled study. Front Neurol. (2023) 14:1059789. doi: 10.3389/fneur.2023.1059789, PMID: 36873436
Shen L Huang Y Liao Y Yin X Huang Y Ou J et al. Effect of high-frequency repetitive transcranial magnetic stimulation over M1 for consciousness recovery after traumatic brain injury. Brain Behav. (2023) 13:e2971. doi: 10.1002/brb3.2971, PMID: 36977194
Naro A Russo M Leo A Bramanti P Quartarone A Calabrò RS. A single session of repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in patients with unresponsive wakefulness syndrome: preliminary results. Neurorehabil Neural Repair. (2015) 29:603–13. doi: 10.1177/1545968314562114
He F Wu M Meng F Hu Y Gao J Chen Z et al. Effects of 20Hz repetitive transcranial magnetic stimulation on disorders of consciousness: a resting-state electroencephalography study. Neural Plast. (2018) 2018:1–8. doi: 10.1155/2018/5036184, PMID: 29770146
Cincotta M Giovannelli F Chiaramonti R Bianco G Godone M Battista D et al. No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: a randomised, sham-controlled study. Cortex. (2015) 71:368–76. doi: 10.1016/j.cortex.2015.07.027, PMID: 26301875
Liu X Meng F Gao J Zhang L Zhou Z Pan G et al. Behavioral and resting state functional connectivity effects of high frequency rtms on disorders of consciousness: a sham-controlled study. Front Neurol. (2018) 9:982. doi: 10.3389/fneur.2018.00982
Fan J Zhong Y Wang H Aierken N He R. Repetitive transcranial magnetic stimulation improves consciousness in some patients with disorders of consciousness. Clin Rehabil. (2022) 36:916–25. doi: 10.1177/02692155221089455, PMID: 35322709
He RH Wang HJ Zhou Z Fan JZ Zhang SQ Zhong YH. The influence of high-frequency repetitive transcranial magnetic stimulation on endogenous estrogen in patients with disorders of consciousness. Brain Stimul. (2021) 14:461–6. doi: 10.1016/j.brs.2021.02.014, PMID: 33677157
Chen JM Chen QF Wang ZY Chen YJ Zhang NN Xu JW et al. (2022). Influence of high-frequency repetitive transcranial magnetic stimulation on neurobehavioral and electrophysiology in patients with disorders of consciousness. Neural Plast 13:7195699. doi: 10.1155/2022/7195699
Legostaeva L Poydasheva A Iazeva E Sinitsyn D Sergeev D Bakulin I et al. Stimulation of the angular gyrus improves the level of consciousness. Brain Sci. (2019) 9:103. doi: 10.3390/brainsci9050103, PMID: 31064138
Li Y Li L Huang H. Effect of non-invasive brain stimulation on conscious disorder in patients after brain injury: a network meta-analysis. Neurol Sci. (2023) 44:2311–27. doi: 10.1007/s10072-023-06743-7, PMID: 36943589
Boly M Massimini M Tsuchiya N Postle BR Koch C Tononi G. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J Neurosci. (2017) 37:9603–13. doi: 10.1523/JNEUROSCI.3218-16.2017, PMID: 28978697
Tononi G. Integrated information theory of consciousness: an updated account. Arch Ital Biol. (2012) 150:293–329. doi: 10.4449/aib.v149i5.1388, PMID: 23802335
Giacino JT Fins JJ Laureys S Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. (2014) 10:99–114. doi: 10.1038/nrneurol.2013.279
Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. (2010) 33:1–9. doi: 10.1016/j.tins.2009.11.002, PMID: 19954851
Gold L Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U S A. (2002) 99:7699–704. doi: 10.1073/pnas.112012499, PMID: 12032346
Casarotto S Comanducci A Rosanova M Sarasso S Fecchio M Napolitani M et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol. (2016) 80:718–29. doi: 10.1002/ana.24779, PMID: 27717082
Cavanna AE. The precuneus and consciousness. CNS Spectr. (2007) 12:545–52. doi: 10.1017/S1092852900021295, PMID: 17603406
Dehaene S Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition. (2001) 79:1–37. doi: 10.1016/S0010-0277(00)00123-2, PMID: 11164022
Dehaene S Changeux JP Naccache L Sackur J Sergent C. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. (2006) 10:204–11. doi: 10.1016/j.tics.2006.03.007
Chennu S Annen J Wannez S Thibaut A Chatelle C Cassol H et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. (2017) 140:2120–32. doi: 10.1093/brain/awx163, PMID: 28666351
Petrides M. The role of the mid-dorsolateral prefrontal cortex in working memory. Exp Brain Res. (2000) 133:44–54. doi: 10.1007/s002210000399, PMID: 10933209
Bodovitz S. The neural correlate of consciousness. J Theor Biol. (2008) 254:594–8. doi: 10.1016/j.jtbi.2008.04.019
Fernández-Espejo D Soddu A Cruse D Palacios EM Junque C Vanhaudenhuyse A et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol. (2012) 72:335–43. doi: 10.1002/ana.23635, PMID: 23034909
Vanhaudenhuyse A Noirhomme Q Tshibanda LJF Bruno MA Boveroux P Schnakers C et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. (2010) 133:161–71. doi: 10.1093/brain/awp313, PMID: 20034928
Wu M Yu Y Luo L Wu Y Gao J Ye X et al. Efficiency of repetitive transcranial direct current stimulation of the dorsolateral prefrontal cortex in disorders of consciousness: a randomized sham-controlled study. Neural Plast. (2019) 2019:1–11. doi: 10.1155/2019/7089543, PMID: 31308848
Rappaport M Hall KM Hopkins K Belleza T Cope DN. Disability rating scale for severe head trauma: coma to community. Arch Phys Med Rehabil. (1982) 63:118–23. PMID: 7073452
Levin HS Boake C Song J McCauley S Contant C Diaz-Marchan P et al. Validity and sensitivity to change of the extended Glasgow outcome scale in mild to moderate traumatic brain injury. J Neurotrauma. (2001) 18:575–84. doi: 10.1089/089771501750291819, PMID: 11437080
Lapitskaya N Gosseries O De Pasqua V Pedersen AR Nielsen JF De Noordhout AM et al. Abnormal corticospinal excitability in patients with disorders of consciousness. Brain Stimul. (2013) 6:590–7. doi: 10.1016/j.brs.2013.01.002
ter Braack EM de Goede AA van Putten MJAM. Resting motor threshold, MEP and TEP variability during daytime. Brain Topogr. (2019) 32:17–27. doi: 10.1007/s10548-018-0662-7, PMID: 30019114
Schecklmann M Schmaußer M Klinger F Kreuzer PM Krenkel L Langguth B. Resting motor threshold and magnetic field output of the figure-of-8 and the double-cone coil. Sci Rep. (2020) 10:1644. doi: 10.1038/s41598-020-58034-2, PMID: 32015398
Gosseries O Sarasso S Casarotto S Boly M Schnakers C Napolitani M et al. On the cerebral origin of EEG responses to TMS: insights from severe cortical lesions. Brain Stimul. (2015) 8:142–9. doi: 10.1016/j.brs.2014.10.008, PMID: 25481074
Okamoto M Dan H Sakamoto K Takeo K Shimizu K Kohno S et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage. (2004) 21:99–111. doi: 10.1016/j.neuroimage.2003.08.026, PMID: 14741647
Herwig U Satrapi P Schönfeldt-Lecuona C. Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. (2003) 16:95–9. doi: 10.1023/B:BRAT.0000006333.93597.9d, PMID: 14977202
Giacino JT Kalmar K Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. (2004) 85:2020–9. doi: 10.1016/j.apmr.2004.02.033, PMID: 15605342
Annen J Filippini MM Bonin E Cassol H Aubinet C Carrière M et al. Diagnostic accuracy of the CRS-R index in patients with disorders of consciousness. Brain Inj. (2019) 33:1409–12. doi: 10.1080/02699052.2019.1644376, PMID: 31319707
Maurer-Karattup P Giacino J Luther M Eifert B. Diagnostik von Bewusstseinsstörungen anhand der deutschsprachigen Coma Recovery Scale-Revised (CRS-R). Neurol Rehabil. (2010) 16:232–46.
Schnakers C Majerus S Giacino J Vanhaudenhuyse A Bruno MA Boly M et al. A French validation study of the coma recovery scale-revised (CRS-R). Brain Inj. (2008) 22:786–92. doi: 10.1080/02699050802403557, PMID: 18787989
Casali AG Rosanova M Massimini M Bruno MA Casali KR Tononi G et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. (2013) 5:198ra105. doi: 10.1126/scitranslmed.3006294, PMID: 23946194
Arai N Nakanishi T Nakajima S Li X Wada M Daskalakis ZJ et al. Insights of neurophysiology on unconscious state using combined transcranial magnetic stimulation and electroencephalography: a systematic review. Neurosci Biobehav Rev. (2021) 131:293–312. doi: 10.1016/j.neubiorev.2021.09.029, PMID: 34555384
Erdfelder E Faul F Buchner A Lang AG. Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. (2009) 41:1149–60. doi: 10.3758/BRM.41.4.1149
RStudio Team. RStudio: integrated development for R. Boston: RStudio, Inc (2019).
Liu Y Li Z Bai Y. Frontal and parietal lobes play crucial roles in understanding the disorder of consciousness: a perspective from electroencephalogram studies. Front Neurosci. (2023) 16:1024278. doi: 10.3389/fnins.2022.1024278, PMID: 36778900
Xia X Liu Y Bai Y Liu Z Yang Y Guo Y et al. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness. Neuroreport. (2017) 28:1022–9. doi: 10.1097/WNR.0000000000000886, PMID: 28902713
Louise-Bender Pape T Rosenow J Lewis G Ahmed G Walker M Guernon A et al. Repetitive transcranial magnetic stimulation-associated neurobehavioral gains during coma recovery. Brain Stimul. (2009) 2:22–35. doi: 10.1016/j.brs.2008.09.004, PMID: 20633400
Edlow BL Sanz LRD Polizzotto L Pouratian N Rolston JD Snider SB et al. Therapies to restore consciousness in patients with severe brain injuries: a gap analysis and future directions. Neurocrit Care. (2021) 35:68–85. doi: 10.1007/s12028-021-01227-y, PMID: 34236624
Barra A Monti M Thibaut A. Noninvasive brain stimulation therapies to promote recovery of consciousness: where we are and where we should go. Semin Neurol. (2022) 42:348–62. doi: 10.1055/s-0042-1755562, PMID: 36100229
Willacker L Raiser TM Bassi M Bender A Comanducci A Rosanova M et al. PerBrain: a multimodal approach to personalized tracking of evolving state-of-consciousness in brain-injured patients: protocol of an international, multicentric, observational study. BMC Neurol. (2022) 22:468. doi: 10.1186/s12883-022-02958-x, PMID: 36494776