Coma; Common data elements; Consciousness; Neuroimaging; Critical Care and Intensive Care Medicine; Neurology (clinical)
Abstract :
[en] [en] BACKGROUND: Over the past 5 decades, advances in neuroimaging have yielded insights into the pathophysiologic mechanisms that cause disorders of consciousness (DoC) in patients with severe brain injuries. Structural, functional, metabolic, and perfusion imaging studies have revealed specific neuroanatomic regions, such as the brainstem tegmentum, thalamus, posterior cingulate cortex, medial prefrontal cortex, and occipital cortex, where lesions correlate with the current or future state of consciousness. Advanced imaging modalities, such as diffusion tensor imaging, resting-state functional magnetic resonance imaging (fMRI), and task-based fMRI, have been used to improve the accuracy of diagnosis and long-term prognosis, culminating in the endorsement of fMRI for the clinical evaluation of patients with DoC in the 2018 US (task-based fMRI) and 2020 European (task-based and resting-state fMRI) guidelines. As diverse neuroimaging techniques are increasingly used for patients with DoC in research and clinical settings, the need for a standardized approach to reporting results is clear. The success of future multicenter collaborations and international trials fundamentally depends on the implementation of a shared nomenclature and infrastructure.
METHODS: To address this need, the Neurocritical Care Society's Curing Coma Campaign convened an international panel of DoC neuroimaging experts to propose common data elements (CDEs) for data collection and reporting in this field.
RESULTS: We report the recommendations of this CDE development panel and disseminate CDEs to be used in neuroimaging studies of patients with DoC.
CONCLUSIONS: These CDEs will support progress in the field of DoC neuroimaging and facilitate international collaboration.
Disciplines :
Neurosciences & behavior
Author, co-author :
Edlow, Brian L ; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. bedlow@mgh.harvard.edu ; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA. bedlow@mgh.harvard.edu
Boerwinkle, Varina L; Clinical Resting-State Functional Magnetic Resonance Imaging Laboratory and Service, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Boly, Mélanie ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie ; Department of Neurology, University of Wisconsin, Madison, WI, USA ; Department of Psychiatry, Wisconsin Institute for Sleep and Consciousness, University of Wisconsin, Madison, WI, USA
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Laureys, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau² ; CERVO Research Institute, Laval University, Quebec, Canada
Mukherjee, Pratik; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
Puybasset, Louis; Department of Anesthesiology and Intensive Care, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
Stevens, Robert D; Departments of Anesthesiology and Critical Care Medicine, Neurology, Radiology, and Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Threlkeld, Zachary D; Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
Newcombe, Virginia F J; PACE Section, Department of Medicine, University of Cambridge, Cambridge, UK
Fernandez-Espejo, Davinia; School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
and the Curing Coma Campaign and its Contributing Members
NINDS - National Institute of Neurological Disorders and Stroke JSMF - James S McDonnell Foundation
Funding text :
This work was supported by the National Institutes of Health Director’s Office (DP2HD101400), the National Institutes of Health National Institute of Neurological Disorders and Stroke (R21NS113037), the James S. McDonnell Foundation, and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the specific grant agreement No. 945539 (Human Brain Project SGA3).
Edlow BL, et al. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol. 2021;17(3):135–56. DOI: 10.1038/s41582-020-00428-x
Arnts H, et al. The dilemma of hydrocephalus in prolonged disorders of consciousness. J Neurotrauma. 2020;37(20):2150–2156. DOI: 10.1089/neu.2020.7129
Wilson MR, Roos KL. Infectious diseases and impaired consciousness. Neurol Clin. 2011;29(4):927–42. DOI: 10.1016/j.ncl.2011.07.013
Young MJ, Peterson A. Neuroethics across the disorders of consciousness care continuum. Semin Neurol. 2022;42(3):375–92. DOI: 10.1055/a-1883-0701
Fins JJ. The ethics of measuring and modulating consciousness: the imperative of minding time. Prog Brain Res. 2009;177:371–82. DOI: 10.1016/S0079-6123(09)17726-9
Sanz LRD, et al. Update on neuroimaging in disorders of consciousness. Curr Opin Neurol. 2021;34(4):488–96. DOI: 10.1097/WCO.0000000000000951
Fischer D, et al. Applications of advanced MRI to disorders of consciousness. Semin Neurol. 2022;42(3):325–334. DOI: 10.1055/a-1892-1894
Edlow BL, et al. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol. 2013;72(6):505–23. DOI: 10.1097/NEN.0b013e3182945bf6
Fischer DB, et al. A human brain network derived from coma-causing brainstem lesions. Neurology. 2016;87(23):2427–34. DOI: 10.1212/WNL.0000000000003404
Izzy S, et al. Revisiting grade 3 diffuse axonal injury: not all brainstem microbleeds are prognostically equal. Neurocrit Care. 2017;27(2):199–207. DOI: 10.1007/s12028-017-0399-2
Snider SB, et al. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp. 2020;41(6):1520–31. DOI: 10.1002/hbm.24892
Bianciardi M, et al. Location of subcortical microbleeds and recovery of consciousness after severe traumatic brain injury. Neurology. 2021;97(2):e113–23. DOI: 10.1212/WNL.0000000000012192
Lutkenhoff ES, et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol. 2015;78(1):68–76. DOI: 10.1002/ana.24423
Fernandez-Espejo D, et al. Reductions of thalamic volume and regional shape changes in the vegetative and the minimally conscious states. J Neurotrauma. 2010;27(7):1187–93. DOI: 10.1089/neu.2010.1297
Fernandez-Espejo D, et al. Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. Neuroimage. 2011;54(1):103–12. DOI: 10.1016/j.neuroimage.2010.08.035
Annen J, et al. Regional brain volumetry and brain function in severely brain-injured patients. Ann Neurol. 2018;83(4):842–53. DOI: 10.1002/ana.25214
Boly M, et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clin Neuroimaging Evid J Neurosci. 2017;37(40):9603–13.
Snider SB, et al. Regional distribution of brain injury after cardiac arrest: clinical and electrographic correlates. Neurology. 2022;98(12):e1238–47. DOI: 10.1212/WNL.0000000000013301
Vanhaudenhuyse A, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2010;133(Pt 1):161–71. DOI: 10.1093/brain/awp313
Newcombe VF, et al. Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications. J Neurol Neurosurg Psychiatry. 2010;81(5):552–61. DOI: 10.1136/jnnp.2009.196246
Fernandez-Espejo D, et al. Combination of diffusion tensor and functional magnetic resonance imaging during recovery from the vegetative state. BMC Neurol. 2010;10:77. DOI: 10.1186/1471-2377-10-77
Norton L, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology. 2012;78(3):175–81. DOI: 10.1212/WNL.0b013e31823fcd61
Fernandez-Espejo D, et al. A role for the default mode network in the bases of disorders of consciousness. Ann Neurol. 2012;72(3):335–43. DOI: 10.1002/ana.23635
Demertzi A, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(Pt 9):2619–31. DOI: 10.1093/brain/awv169
Thengone DJ, et al. Local changes in network structure contribute to late communication recovery after severe brain injury. Sci Transl Med. 2016;8(368):368re5. DOI: 10.1126/scitranslmed.aaf6113
Sair HI, et al. Early functional connectome integrity and 1-year recovery in comatose survivors of cardiac arrest. Radiology. 2018;287(1):247–55. DOI: 10.1148/radiol.2017162161
Threlkeld ZD, et al. Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex. 2018;106:299–308. DOI: 10.1016/j.cortex.2018.05.004
Demertzi A, et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv. 2019;5(2):eaat7603. DOI: 10.1126/sciadv.aat7603
Spindler LRB, et al. Dopaminergic brainstem disconnection is common to pharmacological and pathological consciousness perturbation. Proc Natl Acad Sci USA. 2021;118(30):e2026289118. DOI: 10.1073/pnas.2026289118
Amiri M, et al. Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study. Brain. 2023;146(1):50–64. DOI: 10.1093/brain/awac335
Snider SB, et al. Ascending arousal network connectivity during recovery from traumatic coma. Neuroimage Clin. 2020;28: 102503. DOI: 10.1016/j.nicl.2020.102503
Annen J, et al. Function-structure connectivity in patients with severe brain injury as measured by MRI-DWI and FDG-PET. Hum Brain Mapp. 2016;37(11):3707–20. DOI: 10.1002/hbm.23269
Panda R, et al. Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. Elife. 2022;11:e77462. DOI: 10.7554/eLife.77462
Galanaud D, et al. Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology. 2012;117(6):1300–10. DOI: 10.1097/ALN.0b013e3182755558
Velly L, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 2018;17(4):317–26. DOI: 10.1016/S1474-4422(18)30027-9
Puybasset L, et al. Prognostic value of global deep white matter DTI metrics for 1-year outcome prediction in ICU traumatic brain injury patients: an MRI-COMA and CENTER-TBI combined study. Intensive Care Med. 2022;48(2):201–12. DOI: 10.1007/s00134-021-06583-z
Norton L, et al. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology. 2012;78:175–81. DOI: 10.1212/WNL.0b013e31823fcd61
Koenig MA, et al. MRI default mode network connectivity is associated with functional outcome after cardiopulmonary arrest. Neurocrit Care. 2014;20(3):348–57. DOI: 10.1007/s12028-014-9953-3
Silva S, et al. Disruption of posteromedial large-scale neural communication predicts recovery from coma. Neurology. 2015;85:1–9. DOI: 10.1212/WNL.0000000000002196
Song M, et al. Prognostication of chronic disorders of consciousness using brain functional networks and clinical characteristics. Elife. 2018;7:e36173. DOI: 10.7554/eLife.36173
Sair HI, et al. Early functional connectome integrity and 1-year recovery in comatose survivors of cardiac arrest. Radiology. 2018;287:247–55. DOI: 10.1148/radiol.2017162161
Guo H, et al. Evaluation of prognosis in patients with severe traumatic brain injury using resting-state functional magnetic resonance imaging. World Neurosurg. 2019;121:e630–9. DOI: 10.1016/j.wneu.2018.09.178
Yu Y, et al. A multi-domain prognostic model of disorder of consciousness using resting-state fMRI and laboratory parameters. Brain Imaging Behav. 2020;15:1966–76. DOI: 10.1007/s11682-020-00390-8
Pugin D, et al. Resting-state brain activity for early prediction outcome in postanoxic patients in a coma with indeterminate clinical prognosis. Am J Neuroradiol. 2020;41:1022–30. DOI: 10.3174/ajnr.A6572
Peran P, et al. Functional and Structural Integrity of Frontoparietal Connectivity in Traumatic and Anoxic Coma. Crit Care Med. 2020;48:e639. DOI: 10.1097/CCM.0000000000004406
Fischer D, et al. Intact brain network function in an unresponsive patient with COVID-19. Ann Neurol. 2020;88(4):851–4. DOI: 10.1002/ana.25838
Norton L, et al. Functional neuroimaging as an assessment tool in critically ill patients. Ann Neurol. 2023;93(1):131–41. DOI: 10.1002/ana.26530
Thibaut A, et al. Preservation of brain activity in unresponsive patients identifies MCS star. Ann Neurol. 2021;90(1):89–100. DOI: 10.1002/ana.26095
Boerwinkle VL, et al. Association of network connectivity via resting state functional MRI with consciousness, mortality, and outcomes in neonatal acute brain injury. Neuroimage Clin. 2022;34: 102962. DOI: 10.1016/j.nicl.2022.102962
Boerwinkle VL, et al. Resting-state fMRI in disorders of consciousness to facilitate early therapeutic intervention. Neurol Clin Pract. 2019;9(4):e33–5. DOI: 10.1212/CPJ.0000000000000596
Boerwinkle VL, et al. Correlating resting-state functional magnetic resonance imaging connectivity by independent component analysis-based epileptogenic zones with intracranial electroencephalogram localized seizure onset zones and surgical outcomes in prospective pediatric intractable epilepsy study. Brain Connect. 2017;7(7):424–42. DOI: 10.1089/brain.2016.0479
Chakraborty AR, et al. Resting-state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: a systematic review and meta-analysis. Epilepsia. 2020;61(9):1958–68. DOI: 10.1111/epi.16637
Guo JN, et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study. Lancet Neurol. 2016;15(13):1336–45. DOI: 10.1016/S1474-4422(16)30295-2
Fischer D, et al. Ictal fMRI: mapping seizure topography with rhythmic bold oscillations. Brain Sci 2022;12(12):1710
Stender J, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet. 2014;384(9942):514–22. DOI: 10.1016/S0140-6736(14)60042-8
Menon DK, et al. Cortical processing in persistent vegetative state. Lancet. 1998;352(9123):200. DOI: 10.1016/S0140-6736(05)77805-3
Owen AM, et al. Detecting awareness in the vegetative state. Science. 2006;313(5792):1402. DOI: 10.1126/science.1130197
Coleman MR, et al. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain. 2009;132(Pt 9):2541–52. DOI: 10.1093/brain/awp183
Monti MM, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362(7):579–89. DOI: 10.1056/NEJMoa0905370
Naci L, Owen AM. Making every word count for nonresponsive patients. JAMA Neurol. 2013;70(10):1235–41.
Edlow BL, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain. 2017;140(9):2399–414. DOI: 10.1093/brain/awx176
Schiff ND. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 2015;72(12):1413–5. DOI: 10.1001/jamaneurol.2015.2899
Kondziella D, et al. Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(5):485–92. DOI: 10.1136/jnnp-2015-310958
Schnakers C, et al. Covert cognition in disorders of consciousness: a meta-analysis. Brain Sci. 2020;10(12):930. DOI: 10.3390/brainsci10120930
Fins JJ, Bernat JL. Ethical, palliative, and policy considerations in disorders of consciousness. Neurology. 2018;91(10):471–5. DOI: 10.1212/WNL.0000000000005927
Young MJ, Edlow BL. The quest for covert consciousness: bringing neuroethics to the bedside. Neurology. 2021;96(19):893–6. DOI: 10.1212/WNL.0000000000011734
Peterson A, Aas S, Wasserman D. What justifies the allocation of health care resources to patients with disorders of consciousness? AJOB Neurosci. 2021;12(2–3):127–39. DOI: 10.1080/21507740.2021.1896594
Kondziella D, et al. A precision medicine framework for classifying patients with disorders of consciousness: Advanced Classification of Consciousness Endotypes (ACCESS). Neurocrit Care. 2021;35(Suppl 1):27–36. DOI: 10.1007/s12028-021-01246-9
Boerwinkle V.L. Patient stories: road to recovery. World Coma Day. March 22, 2022. Neurocritical Care Society. https://bit.ly/Peds-CC1. 2022.
Kirsch M, et al. Sedation of patients with disorders of consciousness during neuroimaging: effects on resting state functional brain connectivity. Anesth Analg. 2017;124(2):588–98. DOI: 10.1213/ANE.0000000000001721
Fernandez-Espejo D, Rossit S, Owen AM. A thalamocortical mechanism for the absence of overt motor behavior in covertly aware patients. JAMA Neurol. 2015;72(12):1442–50. DOI: 10.1001/jamaneurol.2015.2614
Stafford CA, Owen AM, Fernandez-Espejo D. The neural basis of external responsiveness in prolonged disorders of consciousness. Neuroimage Clin. 2019;22: 101791. DOI: 10.1016/j.nicl.2019.101791
Giacino JT, et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91(10):450–60. DOI: 10.1212/WNL.0000000000005926
Kondziella D, et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020;27(5):741–56. DOI: 10.1111/ene.14151
Helbok R, et al. The Curing Coma Campaign International Survey on Coma Epidemiology, Evaluation, and Therapy (COME TOGETHER). Neurocrit Care. 2022;37(1):47–59. DOI: 10.1007/s12028-021-01425-8
Edlow BL, Fins JJ. Assessment of covert consciousness in the intensive care unit: clinical and ethical considerations. J Head Trauma Rehabil. 2018;33(6):424–34. DOI: 10.1097/HTR.0000000000000448
Young MJ, et al. Toward uniform insurer coverage for functional MRI following severe brain injury. J Head Trauma Rehabil. 2023;38(4):351–357. DOI: 10.1097/HTR.0000000000000864
Scolding N, Owen AM, Keown J. Prolonged disorders of consciousness: a critical evaluation of the new UK guidelines. Brain. 2021;144(6):1655–60. DOI: 10.1093/brain/awab063
Physicians R.C.O. Prolonged disorders of consciousness following sudden onset brain injury. National Clinical Guidelines. London: Royal College of Physicians;2020.
Provencio JJ, et al. The Curing Coma Campaign: framing initial scientific challenges-proceedings of the first curing coma campaign scientific advisory council meeting. Neurocrit Care. 2020;33(1):1–12. DOI: 10.1007/s12028-020-01028-9
Haacke EM, et al. Common data elements in radiologic imaging of traumatic brain injury. J Magn Reson Imaging. 2010;32(3):516–43. DOI: 10.1002/jmri.22259
Saver JL, et al. Standardizing the structure of stroke clinical and epidemiologic research data: the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Common Data Element (CDE) project. Stroke. 2012;43(4):967–73. DOI: 10.1161/STROKEAHA.111.634352
Hackenberg KAM, et al. Common data elements for radiological imaging of patients with subarachnoid hemorrhage: proposal of a multidisciplinary research group. Neurocrit Care. 2019;30(Suppl 1):60–78. DOI: 10.1007/s12028-019-00728-1
Edlow BL, et al. Common data elements for COVID-19 neuroimaging: a GCS-NeuroCOVID proposal. Neurocrit Care. 2021;34(2):365–70. DOI: 10.1007/s12028-021-01192-6
Gorgolewski KJ, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3: 160044. DOI: 10.1038/sdata.2016.44
Edlow BL, et al. Personalized connectome mapping to guide targeted therapy and promote recovery of consciousness in the intensive care unit. Neurocrit Care. 2020;33(2):364–75. DOI: 10.1007/s12028-020-01062-7
Fridman EA, et al. Presynaptic dopamine deficit in minimally conscious state patients following traumatic brain injury. Brain. 2019;142(7):1887–93. DOI: 10.1093/brain/awz118