Experimental validation; Locating nonlinearities; Nonlinear orthogonal projections; Nonlinear response shape; Experimental validations; Frequency response functions; Linear frequency response; Locating nonlinearity; Non-linear response; Nonlinear orthogonal projection; Nonlinear restoring force; Orthogonal projection; Structural nonlinearities; Control and Systems Engineering; Signal Processing; Civil and Structural Engineering; Aerospace Engineering; Mechanical Engineering; Computer Science Applications
Abstract :
[en] This paper addresses the identification of the spatial location of nonlinearities based on classical modal testing. Interpreting nonlinear systems as linear systems with a nonlinear feedback loop shows that the nonlinear contribution to the response and the nonlinear restoring forces are related through the linear frequency response function (FRF) matrix. Specifically, if the nonlinearity is localized, the response's nonlinear part is intimately linked with the linear FRF at the nonlinearity location. Thus, processing input–output data measured under pseudorandom excitation, the nonlinearity location can be inferred from the comparison of the nonlinear part of the response with the different measured FRFs. A second approach, which provides a direct estimation of the nonlinear restoring forces at the different degrees of freedom, also utilizes the same relations. Both procedures are demonstrated numerically and experimentally.
This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764547 (DyVirt project).
Kerschen, Gatan, Worden, Keith, Vakakis, Alexander F., Golinval, Jean Claude, Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20:3 (2006), 505–592, 10.1016/j.ymssp.2005.04.008 URL http://www.sciencedirect.com/science/article/pii/S0888327005000828.
Noël, Jean Philippe, Kerschen, Gatan, Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83 (2017), 2–35, 10.1016/j.ymssp.2016.07.020 URL http://www.sciencedirect.com/science/article/pii/S088832701630245X.
Worden, Keith, Tomlinson, G.R., Nonlinearity in structural dynamics: detection, identification and modeling. Appl. Mech. Rev., 55(2), 2002, 10.1115/1.1451161.
Richards, C.M., Singh, R., Identification of multi-degree-of-freedom non-linear systems under random excitations by the “reverse path” spectral method. J. Sound Vib. 213:4 (1998), 673–708, 10.1006/jsvi.1998.1522 URL http://www.sciencedirect.com/science/article/pii/S0022460X9891522X.
Adams, D.E., Allemang, R.J., A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback. Mech. Syst. Signal Process. 14:4 (2000), 637–656, 10.1006/mssp.2000.1292 URL http://www.sciencedirect.com/science/article/pii/S0888327000912925.
Noël, Jean P., Kerschen, G., Frequency-domain subspace identification for nonlinear mechanical systems. Mech. Syst. Signal Process. 40:2 (2013), 701–717, 10.1016/j.ymssp.2013.06.034 URL http://www.sciencedirect.com/science/article/pii/S088832701300318X.
delli Carri, Arnaldo, Weekes, B., Di Maio, Dario, Ewins, D.J., Extending modal testing technology for model validation of engineering structures with sparse nonlinearities: A first case study. Mech. Syst. Signal Process. 84 (2017), 97–115, 10.1016/j.ymssp.2016.04.012 URL http://www.sciencedirect.com/science/article/pii/S088832701630053X.
Dossogne, T., Masset, L., Peeters, B., Noël, J.P., Nonlinear dynamic model upgrading and updating using sine-sweep vibration data. Proc. R. Soc. A: Math., Phys. Eng. Sci., 475(2229), 2019, 20190166, 10.1098/rspa.2019.0166 arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2019.0166, URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2019.0166.
Kerschen, G., Peeters, M., Golinval, J.C., Stéphan, C., Nonlinear modal analysis of a full-scale aircraft. J. Aircr. 50:5 (2013), 1409–1419, 10.2514/1.C031918 arXiv:10.2514/1.C031918.
Giancarlo Kosova, Cristiano Dias Cunha, Emilio Di Lorenzo, Bart Peeters, Pedro Ribeiro, Gatan Kerschen, Finite Element Model Upgrading of an Airplane Mockup with Nonlinear Attachments, in: Proceedings of the 40th International Modal Analysis Conference, (IMAC), Orlando, FL, 2022.
Moore, Keegan J., Mojahed, Alireza, Bergman, Lawrence A., Vakakis, Alexander F., Local nonlinear stores induce global dynamical effects in an experimental model plane. AIAA J. 57:11 (2019), 4953–4965, 10.2514/1.J058311 arXiv:10.2514/1.J058311.
Paduart, Johan, Lauwers, Lieve, Swevers, Jan, Smolders, Kris, Schoukens, Johan, Pintelon, Rik, Identification of nonlinear systems using polynomial nonlinear state space models. Automatica 46:4 (2010), 647–656, 10.1016/j.automatica.2010.01.001 URL http://www.sciencedirect.com/science/article/pii/S000510981000021X.
Thibaut Detroux, Gatan Kerschen, Fabien Ayme, Adrien Pavie, Guillaume Osmond, Nicolas Lastere, Nonlinear Ground Vibration Test of a Full-Scale Aircraft Horizontal Tail Plane, in: Proceedings of the 38th International Modal Analysis Conference, (IMAC), Houston, TX, 2020.
Göge, Dennis, Sinapius, Michael, Füllekrug, Ulrich, Link, Michael, Detection and description of non-linear phenomena in experimental modal analysis via linearity plots. Int. J. Non-Linear Mech. 40:1 (2005), 27–48, 10.1016/j.ijnonlinmec.2004.05.011 Non-linear Fluid Mechanics, URL https://www.sciencedirect.com/science/article/pii/S0020746204000630.
Dennis Göge, Effective Validation of a Finite Element Model – Application of Computational Model Updating to a Civil Four-Engine Aircraft, in: Proceedings of the 21st International Modal Analysis Conference (IMAC), Kissimmee, FL, 2003.
Fritzen, C.P., Jennewein, D., Kiefer, T., Damage detection based on model updating methods. Mech. Syst. Signal Process. 12:1 (1998), 163–186, 10.1006/mssp.1997.0139 URL http://www.sciencedirect.com/science/article/pii/S0888327097901394.
André Tavares, Davide Mastrodicasa, Giancarlo Kosova, Emilio Di Lorenzo, Bart Peeters, Damage and Loose Rivet Detection on an Airbus A320 Panel using Non-Contact Measurement Techniques, in: Proceedings of the 40th International Modal Analysis Conference, (IMAC), Orlando, FL, 2022.
Ahlquist, Javier Rodríguez, Carreño, José Martinez, Climent, Héctor, de Diego, Raúl, de Alba, Jesús, Assessment of nonlinear structural response in a400m gvt. Proceedings of the 28th International Modal Analysis Conference, (IMAC), Jacksonville, FL, 2010, 10.1007/978-1-4419-9834-7˙101.
Josefsson, A., Magnevall, M., Ahlin, K., Broman, G., Spatial location identification of structural nonlinearities from random data. Mech. Syst. Signal Process. 27 (2012), 410–418, 10.1016/j.ymssp.2011.07.020 URL http://www.sciencedirect.com/science/article/pii/S0888327011003098.
Schoukens, M., den Hof, P.M.J. Van, Detecting nonlinear modules in a dynamic network: A step-by-step procedure. IFAC-PapersOnLine 51:15 (2018), 593–597, 10.1016/j.ifacol.2018.09.224 18th IFAC Symposium on System Identification SYSID 2018, URL https://www.sciencedirect.com/science/article/pii/S2405896318318962.
Noël, Jean P., Schoukens, Maarten, Van den Hof, P.M.J., Locating nonlinearity in mechanical systems: a dynamic network perspective. Proceedings of the 36th International Modal Analysis Conference, (IMAC), Orlando, FL, 2018, 10.1007/978-3-319-74280-9˙38.
Schoukens, M., Noël, J.P., Van den Hof, P.M.J., Combining experiments for linear dynamic network identification in the presence of nonlinearities. J. Phys. Conf. Ser., 1065(21), 2018, 212026, 10.1088/1742-6596/1065/21/212026.
Ajjan Al-Hadid, M., Wright, J.R., Developments in the force-state mapping technique for non-linear systems and the extension to the location of non-linear elements in a lumped-parameter system. Mech. Syst. Signal Process. 3:3 (1989), 269–290, 10.1016/0888-3270(89)90053-8 URL https://www.sciencedirect.com/science/article/pii/0888327089900538.
Lin, R.M., Ewins, D.J., Location of localised stiffness non-linearity using measured modal data. Mech. Syst. Signal Process. 9:3 (1995), 329–339, 10.1006/mssp.1995.0027 URL http://www.sciencedirect.com/science/article/pii/S0888327085700271.
Irina Trendafilova, Vincent Lenaerts, G. Kerschen, Jean Claude Golinval, H Brussel, Ward Heylen, Detection, localisation and identification of nonlinearities in structural dynamics, in: Proceedings of the International Seminar on Modal Analysis, (ISMA), Leuven, Belgium, 2000.
R. Pascual, I. Trendafilova, J.C. Golinval, W. Heylen, Damage detection using model updating and identification techniques, in: Proceedings of the Second International Conference on Identification in Engineering Systems, Swansea, UK, 1999.
Vanlanduit, S., Guillaume, P., Schoukens, J., Vanhoenacker, K., Detection and localization of nonlinearities using a scanner laser vibrometer. Proceedings of the International Seminar on Modal Analysis, (ISMA), Leuven, Belgium, 2000.
Wang, Xing, Khodaparast, Hamed Haddad, Shaw, Alexander D., Friswell, Michael I., Zheng, Gangtie, Localisation of local nonlinearities in structural dynamics using spatially incomplete measured data. Mech. Syst. Signal Process. 99 (2018), 364–383, 10.1016/j.ymssp.2017.06.021 URL https://www.sciencedirect.com/science/article/pii/S0888327017303345.
Karsten Krautwald Vesterholm, Anders Brandt, Localizing nonlinear behavior from response measurement, in: Proceedings of the International Conference on Noise and Vibration Engineering, (ISMA), Leuven, Belgium, 2020.
Cheng, C.M., Peng, Z.K., Dong, X.J, Zhang, W.M, Meng, G., Locating non-linear components in two dimensional periodic structures based on NOFRFs. Int. J. Non-Linear Mech. 67 (2014), 198–208, 10.1016/j.ijnonlinmec.2014.09.004 URL https://www.sciencedirect.com/science/article/pii/S0020746214001814.
Cheng, Changming, Zhao, Baoxuan, Fu, Chengkun, Peng, Zhike, Meng, Guang, A two-stage sparse algorithm for localization and characterization of local nonlinear structures. J. Sound Vib., 526, 2022, 116823, 10.1016/j.jsv.2022.116823 URL https://www.sciencedirect.com/science/article/pii/S0022460X22000736.
Özer, Mehmet Bülent, Özgüven, H. Nevzat, Royston, Thomas J., Identification of structural non-linearities using describing functions and the Sherman–Morrison method. Mech. Syst. Signal Process. 23:1 (2009), 30–44, 10.1016/j.ymssp.2007.11.014 Special Issue: Non-linear Structural Dynamics, URL https://www.sciencedirect.com/science/article/pii/S0888327007002622.
Aykan, Murat, Nevzat Özgüven, H., Parametric identification of nonlinearity in structural systems using describing function inversion. Mech. Syst. Signal Process. 40:1 (2013), 356–376, 10.1016/j.ymssp.2013.03.016 URL https://www.sciencedirect.com/science/article/pii/S0888327013001167.
Tanrikulu, Omer, Kuran, Bayindir, Ozguven, H. Nevzat, Imregun, Mehmet, Forced harmonic response analysis of nonlinear structures using describing functions. AIAA J. 31:7 (1993), 1313–1320, 10.2514/3.11769.
Kolluri, Murali M., Allemang, Randall J., Phillips, Allyn W., Non-parametric detection and localization of structural nonlinearities using orthogonal projections. Mech. Syst. Signal Process. 123 (2019), 455–465, 10.1016/j.ymssp.2019.01.027 URL http://www.sciencedirect.com/science/article/pii/S0888327019300263.
Giancarlo Kosova, Emilio Di Lorenzo, Bart Peeters, Gatan Kerschen, Nonparametric Localization of Structural Nonlinearities from Input-Output Data, in: Proceedings of the 38th International Modal Analysis Conference, (IMAC), Houston, TX, 2020.
Kosova, Giancarlo, Jin, Mengshi, Cenedese, Mattia, Chen, Wei, Singh, Aryan, Jana, Debasish, Brake, Matthew R W, et al. Nonlinear system identification of a jointed structure using full-field data: part ii analysis. Proceedings of the 38th International Modal Analysis Conference, (IMAC), Houston, TX, 2020, 10.1007/978-3-030-47626-7˙27.
Adams, Douglas E., Allemang, Randall J., A new derivation of the frequency response function matrix for vibrating non-linear systems. J. Sound Vib. 227:5 (1999), 1083–1108, 10.1006/jsvi.1999.2396.
Csurcsia, Péter Zoltán, Peeters, Bart, Schoukens, Johan, User-friendly nonlinear nonparametric estimation framework for vibro-acoustic industrial measurements with multiple inputs. Mech. Syst. Signal Process., 145, 2020, 106926, 10.1016/j.ymssp.2020.106926 URL https://www.sciencedirect.com/science/article/pii/S0888327020303125.
Pintelon, R., Schoukens, J., System Identification: A Frequency Domain Approach. Second Edition, 2012.
Kolluri, Murali M., Chawla, Rohan D., Allemang, Randall J., Phillips, Allyn W., An investigation of the component of response spectrum uncorrelated with input. Mech. Syst. Signal Process., 133, 2019, 106269, 10.1016/j.ymssp.2019.106269 URL https://www.sciencedirect.com/science/article/pii/S0888327019304844.
Donald J. Nefske, Shung H. Sung, Correlation of a coarse-mesh finite element model using structural system identification and a frequency response assurance criterion, in: Proceedings Of The 14th International Modal Analysis Conference, IMAC, 1996.
Peeters, Bart, Van der Auweraer, Herman, Guillaume, Patrick, Leuridan, Jan, The polymax frequency-domain method: A new standard for modal parameter estimation?. Shock Vib., 11, 2004, 10.1155/2004/523692.