Chemical Exposure Highlighted without Any A Priori Information in an Epidemiological Study by Metabolomic FT-ICR-MS Fingerprinting at High Throughput and High Resolution
[en] Epidemiological studies aim to assess associations between diseases and risk factors. Such investigations involve a large sample size and require powerful analytical methods to measure the effects of risk factors, resulting in a long analysis time. In this study, chemical exposure markers were detected as the main variables strongly affecting two components coming from a principal component analysis (PCA) exploration of the metabolomic data generated from urinary samples collected on a cohort of about 500 individuals using direct introduction coupled with a Fouriertransform ion cyclotron resonance instrument. The assignment of their chemical identity was first achieved based on their isotopic fine structures detected at very high resolution (R p > 900,000). Their identification as dimethylbiguanide and sotalol was obtained at level 1, thanks to the available authentic chemical standards, tandem mass spectrometry (MS/MS) experiments, and collision cross section measurements. Epidemiological data confirmed that the subjects discriminated by PCA had declared to be prescribed these drugs for either type II diabetes or cardiac arrhythmia. Concentrations of these drugs in urine samples of interest were also estimated by rapid quantification using an external standard calibration method, direct introduction, and MS/MS experiments. Regression analyses showed a good correlation between the estimated drug concentrations and the scores of individuals distributed on these specific PCs. The detection of these chemical exposure markers proved the potential of the proposed high-throughput approach without any prior drug exposure knowledge as a powerful emerging tool for rapid and large-scale phenotyping of subjects enrolled in epidemiological studies to rapidly characterize the chemical exposome and adherence to medical prescriptions.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Habchi, Baninia ; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Alves, Sandra; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Streel, Sylvie ; Centre Hospitalier Universitaire de Liège - CHU > > Service d'oncologie médicale ; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Guillaume, Michèle ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique : aspects spécifiques ; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Donneau, Anne-Françoise ; Université de Liège - ULiège > Département des sciences de la santé publique ; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Appenzeller, Brice ; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Rutledge, Douglas; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Paris, Alain; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Rathahao-Paris, Estelle ; Chemical Research in Toxicology virtual special issue "Mass Spectrometry Advances for Environmental and Human Health"
Language :
English
Title :
Chemical Exposure Highlighted without Any A Priori Information in an Epidemiological Study by Metabolomic FT-ICR-MS Fingerprinting at High Throughput and High Resolution
National Research Council (US) Committee on Environmental Epidemiology . Environmental Epideiology Vol 1: Public Health and Hazardous Wastes; National Academies Press (US): Washington (DC), 1991; Vol. 1.
Prado-Aguilar, C. A.; Martínez, Y. V.; Segovia-Bernal, Y.; Reyes-Martínez, R.; Arias-Ulloa, R. Performance of Two Questionnaires to Measure Treatment Adherence in Patients with Type-2 Diabetes. BMC Publ. Health 2009, 9 ( 1), 38, 10.1186/1471-2458-9-38
Haring, R.; Wallaschofski, H. Diving Through the “-Omics”: The Case for Deep Phenotyping and Systems Epidemiology. OMICS A J. Integr. Biol. 2012, 16 ( 5), 231- 234, 10.1089/omi.2011.0108
Ren, J. L.; Zhang, A. H.; Kong, L.; Wang, X. J. Advances in Mass Spectrometry-Based Metabolomics for Investigation of Metabolites. RSC Adv. 2018, 8, 22335- 22350, 10.1039/C8RA01574K
Gika, H.; Virgiliou, C.; Theodoridis, G.; Plumb, R. S.; Wilson, I. D. Untargeted LC/MS-Based Metabolic Phenotyping (Metabonomics/Metabolomics): The State of the Art. J. Chromatogr. B 2019, 1117, 136- 147, 10.1016/j.jchromb.2019.04.009
Habchi, B.; Alves, S.; Paris, A.; Rutledge, D. N.; Rathahao-Paris, E. How to Really Perform High Throughput Metabolomic Analyses Efficiently?. Trends Anal. Chem. 2016, 85, 128- 139, 10.1016/j.trac.2016.09.005
Boldin, I. A.; Nikolaev, E. N. Fourier Transform Ion Cyclotron Resonance Cell with Dynamic Harmonization of the Electric Field in the Whole Volume by Shaping of the Excitation and Detection Electrode Assembly. Rapid Commun. Mass Spectrom. 2011, 25, 122- 126, 10.1002/rcm.4838
Nikolaev, E. N.; Boldin, I. a.; Jertz, R.; Baykut, G. Initial Experimental Characterization of a New Ultra-High Resolution FTICR Cell with Dynamic Harmonization. J. Am. Soc. Mass Spectrom. 2011, 22, 1125- 1133, 10.1007/s13361-011-0125-9
Alves, S.; Rathahao-Paris, E.; Tabet, J. C. Potential of Fourier Transform Mass Spectrometry for High-Throughput Metabolomics Analysis. In Metabolomics Coming of Age with its Technological Diversity; Advances in Botanical Research; Rolin, D., Ed.; Elsevier Amst. Ltd, 2013; Vol. 67, pp 219- 303.
Alkerwi, A.; Guillaume, M.; Zannad, F.; Laufs, U.; Lair, M.-L. Nutrition, Environment and Cardiovascular Health (NESCAV): Protocol of an Inter-Regional Cross-Sectional Study. BMC Publ. Health 2010, 10, 698, 10.1186/1471-2458-10-698
Habchi, B.; Alves, S.; Jouan-Rimbaud Bouveresse, D.; Appenzeller, B.; Paris, A.; Rutledge, D. N.; Rathahao-Paris, E. Potential of Dynamically Harmonized Fourier Transform Ion Cyclotron Resonance Cell for High-Throughput Metabolomics Fingerprinting: Control of Data Quality. Anal. Bioanal. Chem. 2018, 410 ( 2), 483- 490, 10.1007/s00216-017-0738-3
Rathahao-Paris, E.; Alves, S.; Paris, A. High-Throughput Metabolomics Using Flow Injection Analysis and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. In Metabolomics; Wood, P. L., Ed.; Neuromethods; Springer US: New York, NY, 2021; Vol. 159, pp 9- 23.
Habchi, B.; Alves, S.; Jouan-Rimbaud Bouveresse, D.; Moslah, B.; Paris, A.; Lécluse, Y.; Gauduchon, P.; Lebailly, P.; Rutledge, D. N.; Rathahao-Paris, E. An Innovative Chemometric Method for Processing Direct Introduction High Resolution Mass Spectrometry Metabolomic Data: Independent Component-Discriminant Analysis (IC-DA). Metabolomics 2017, 13 ( 4), 45, 10.1007/s11306-017-1179-x
Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37- 52, 10.1016/0169-7439(87)80084-9
Wishart, D. S.; Feunang, Y. D.; Marcu, A.; Guo, A. C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; Sayeeda, Z.; Lo, E.; Assempour, N.; Berjanskii, M.; Singhal, S.; Arndt, D.; Liang, Y.; Badran, H.; Grant, J.; Serra-Cayuela, A.; Liu, Y.; Mandal, R.; Neveu, V.; Pon, A.; Knox, C.; Wilson, M.; Manach, C.; Scalbert, A. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46 ( D1), D608- D617, 10.1093/nar/gkx1089
Bailey, C. J. Metformin: Historical Overview. Diabetologia 2017, 60, 1566- 1576, 10.1007/s00125-017-4318-z
Singh, B. N.; Deedwania, P.; Nademanee, K.; Ward, A.; Sorkin, E. M. Sotalol. A Review of Its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Use. Drugs 1987, 34, 311- 349, 10.2165/00003495-198734030-00002
Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 ( 4), 2097- 2098, 10.1021/es5002105
Thurman, E. M.; Ferrer, I. The Isotopic Mass Defect: A Tool for Limiting Molecular Formulas by Accurate Mass. Anal. Bioanal. Chem. 2010, 397 ( 7), 2807- 2816, 10.1007/s00216-010-3562-6
Moore, L. E.; Clokey, D.; Rappaport, V. J.; Curet, L. B. Metformin Compared With Glyburide in Gestational Diabetes. Obstet. Gynecol. 2010, 115, 55- 59, 10.1097/AOG.0b013e3181c52132
Velazquez, E. M.; Mendoza, S.; Hamer, T.; Sosa, F.; Glueck, C. Metformin Therapy in Polycystic Ovary Syndrome Reduces Hyperinsulinemia, Insulin Resistance, Hyperandrogenemia, and Systolic Blood Pressure, While Facilitating Normal Menses and Pregnancy. Metabolism 1994, 43, 647- 654, 10.1016/0026-0495(94)90209-7
Tang, T.; Norman, R. J.; Balen, A. H.; Lord, J. M.; The Cochrane Collaboration . Insulin-Sensitising Drugs (Metformin, Troglitazone, Rosiglitazone, Pioglitazone, D-Chiro-Inositol) for Polycystic Ovary Syndrome. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd: Chichester, UK, 2003, p CD003053.
Knowler, W.; Barrett-Connor, E.; Fowler, S.; Hamman, R.; Lachin, J.; Walker, E. Reduction in the Incidence of Type 2 Diabetes Mellitus with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393- 403, 10.1007/bf03344412
Cree-Green, M.; Bergman, B. C.; Cengiz, E.; Fox, L. A.; Hannon, T. S.; Miller, K.; Nathan, B.; Pyle, L.; Kahn, D.; Tansey, M.; Tichy, E.; Tsalikian, E.; Libman, I.; Nadeau, K. J. Metformin Improves Peripheral Insulin Sensitivity in Youth With Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104 ( 8), 3265- 3278, 10.1210/jc.2019-00129
Sirtori, C. R.; Franceschini, G.; Galli-Kienle, M.; Cighetti, G.; Galli, G.; Bondioli, A.; Conti, F. Disposition of Metformin (N,N-Dimethylbiguanide) in Man. Clin. Pharmacol. Ther. 1978, 24 ( 6), 683- 693, 10.1002/cpt1978246683