Ocean Engineering; Water Science and Technology; Aquatic Science; Global and Planetary Change; Oceanography; marine heatwaves; marine cold-spells; Southern North Sea; Atlantic multidecadal oscillation; climate change; ERA5
Abstract :
[en] In this study, we examined the long-term spatiotemporal trend of marine heatwaves (MHW) and marine cold spells (MCS) characteristics in the southern North Sea over the last four decades (1982-2021). We then estimated the difference between their annual mean values and the possible relationship with the large-scale climate modes of natural sea surface temperature (SST) and atmospheric variability using satellite SST data. The SST warming rate was 0.33 ± 0.06°C/decade and was associated with an increase in MHW frequency (0.85 ± 0.39 events/decade) and a decrease in MCS frequency (-0.92 ± 0.40 events/decade) over the entire period. We found a distinct difference between the annual mean values of MHW and MCS characteristics, with a rapid increase in total MHW days (14.36 ± 8.16 days/decade), whereas MCS showed an opposite trend (-16.54 ± 9.06 days/decade). The highest MHW frequency was observed in the last two decades, especially in 2014 (8 events), 2020 (5 events), and 2007 (4 events), which were also the warmest years during the study period. Only two years (2010 and 2013) in the last two decades had higher MCS frequency, which was attributed to the strong negative phase of the North Atlantic Oscillation (NAO). Our results also show that on the annual scale, both the East Atlantic Pattern (EAP) and the Atlantic Multidecadal Oscillation (AMO) play a more important role in the formation of the MHW in the southern North Sea than the other teleconnections (e.g., the NAO). However, the NAO made the largest contribution only in the winter. Strong significant (p < 0.05) positive/negative correlations were found between oceanic and atmospheric temperatures and the frequency of MHW/MCS. This suggests that with global warming, we can expect an increase/decrease in MHW/MCS occurrences in the future.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Mohamed, Bayoumy Abdelaziz ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Barth, Alexander ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Alvera Azcarate, Aida ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
Extreme marine heatwaves and cold-spells events in the Southern North Sea: classifications, patterns, and trends
Aboelkhair H. Mohamed B. Morsy M. Nagy H. (2023). Co-occurrence of atmospheric and oceanic heatwaves in the eastern mediterranean over the last four decades. Remote Sens 5, 1841. doi: 10.3390/RS15071841
Alvera-Azcárate A. van der Zande D. Barth A. Troupin C. Martin S. Beckers J. M. (2021). Analysis of 23 years of daily cloud-free chlorophyll and suspended particulate matter in the greater north sea. Front. Mar. Sci. 8. doi: 10.3389/FMARS.2021.707632/BIBTEX
Becker G. A. Pauly M. (1996). Sea surface temperature changes in the North Sea and their causes. ICES J. Mar. Sci. 53, 887–898. doi: 10.1006/JMSC.1996.0111
Bond N. A. Cronin M. F. Freeland H. Mantua N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420. doi: 10.1002/2015GL063306
Borges A. V. Royer C. Martin J. L. Champenois W. Gypens N. (2019). Response of marine methane dissolved concentrations and emissions in the Southern North Sea to the European 2018 heatwave. Cont. Shelf Res. 190, 104004. doi: 10.1016/J.CSR.2019.104004
Chen K. Gawarkiewicz G. Kwon Y.-O. Zhang W. G. (2015). The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. J. Geophys. Res. Ocean. 120, 4324–4339. doi: 10.1002/2014JC010547
Chen K. Gawarkiewicz G. G. Lentz S. J. Bane J. M. (2014). Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Ocean. 119, 218–227. doi: 10.1002/2013JC009393
Chen W. Staneva J. Grayek S. Schulz-Stellenfleth J. Greinert J. (2022). The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea. Nat. Hazards Earth Syst. Sci. 22, 1683–1698. doi: 10.5194/NHESS-22-1683-2022
Ducrotoy J. P. Elliott M. De Jonge V. N. (2000). The north sea. Mar. pollut. Bull. 41, 5–23. doi: 10.1016/S0025-326X(00)00099-0
Frölicher T. L. Fischer E. M. Gruber N. (2018). Marine heatwaves under global warming. Nat 560, 360–364. doi: 10.1038/s41586-018-0383-9
Frölicher T. L. Laufkötter C. (2018). Emerging risks from marine heat waves. Nat. Commun. 9, 1–4. doi: 10.1038/s41467-018-03163-6
Garrabou J. Coma R. Bensoussan N. Bally M. Chevaldonné P. Cigliano M. et al. (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103. doi: 10.1111/J.1365-2486.2008.01823.X
Good S. Fiedler E. Mao C. Martin M. J. Maycock A. Reid R. et al. (2020). The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12. doi: 10.3390/rs12040720
Guiet J. Galbraith E. Kroodsma D. Worm B. (2019). Seasonal variability in global industrial fishing effort. PloS One 14. doi: 10.1371/JOURNAL.PONE.0216819
Hamdeno M. Alvera-Azcaráte A. (2023). Marine heatwaves characteristics in the Mediterranean Sea: Case study the 2019 heatwave events. Front. Mar. Sci. 10. doi: 10.3389/FMARS.2023.1093760/BIBTEX
Hamdeno M. Nagy H. Ibrahim O. Mohamed B. (2022). Responses of satellite chlorophyll-a to the extreme sea surface temperatures over the arabian and Omani gulf. Remote Sens. 14, 4653. doi: 10.3390/RS14184653
Hamed K. H. Ramachandra Rao A. (1998). A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196. doi: 10.1016/S0022-1694(97)00125-X
Hersbach H. Bell B. Berrisford P. Hirahara S. Horányi A. Muñoz-Sabater J. et al. (2020). The ERA5 global reanalysis. Q. J. R. Meteorol. Soc 146, 1999–2049. doi: 10.1002/qj.3803
Hobday A. J. Alexander L. V. Perkins S. E. Smale D. A. Straub S. C. Oliver E. C. J. et al. (2016). A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. doi: 10.1016/j.pocean.2015.12.014
Hobday A. J. Oliver E. C. J. Gupta A. Benthuysen J. A. Burrows M. T. Donat M. G. et al. (2018). Categorizing and naming marine heatwaves. Oceanography 31, 162–173. doi: 10.5670/oceanog.2018.205
Hobday A. J. Pecl G. T. (2014). Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish. 24, 415–425. doi: 10.1007/S11160-013-9326-6/FIGURES/3
Holbrook N. J. Scannell H. A. Sen Gupta A. Benthuysen J. A. Feng M. Oliver E. C. J. et al. (2019). A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13. doi: 10.1038/s41467-019-10206-z
Holbrook N. J. Sen Gupta A. Oliver E. C. J. Hobday A. J. Benthuysen J. A. Scannell H. A. et al. (2020). Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493. doi: 10.1038/s43017-020-0068-4
Hurrell J. W. Kushnir Y. Ottersen G. Visbeck M. (2003). An overview of the north atlantic oscillation. Geophys. Monogr. Ser. 134, 1–35. doi: 10.1029/134GM01
IPCC (2021)Summary for policymakers. In: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on c (Cambridge Univ. Press). Available at: https://www.ipcc.ch/report/ar6/wg1/chapter/summary-for-policymakers/ (Accessed May 25, 2023).
Kirby R. R. Beaugrand G. Lindley J. A. Richardson A. J. Edwards M. Reid P. C. (2007). Climate effects and benthic–pelagic coupling in the North Sea. Mar. Ecol. Prog. Ser. 330, 31–38. doi: 10.3354/MEPS330031
Knight J. R. Allan R. J. Folland C. K. Vellinga M. Mann M. E. (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, 1–4. doi: 10.1029/2005GL024233
Kueh M.-T. Lin C.-Y. (2020). The 2018 summer heatwaves over northwestern Europe and its extended-range prediction. Sci. Rep. 10, 1–18. doi: 10.1038/s41598-020-76181-4
Mills K. E. Pershing A. J. Brown C. J. Chen Y. Chiang F. S. Holland D. S. et al. (2013). Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26. doi: 10.5670/OCEANOG.2013.27
Mohamed B. Nilsen F. Skogseth R. (2022a). Interannual and decadal variability of sea surface temperature and sea ice concentration in the barents sea. Remote Sens. 14, 4413. doi: 10.3390/RS14174413
Mohamed B. Nilsen F. Skogseth R. (2022b). Marine heatwaves characteristics in the barents sea based on high resolution satellite data, (1982–2020). Front. Mar. Sci. 9. doi: 10.3389/FMARS.2022.821646
Oliver E. C. J. (2019). Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659. doi: 10.1007/S00382-019-04707-2
Oliver E. C. J. Benthuysen J. A. Bindoff N. L. Hobday A. J. Holbrook N. J. Mundy C. N. et al. (2017). The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 1–12. doi: 10.1038/ncomms16101
Oliver E. C. J. Burrows M. T. Donat M. G. Sen Gupta A. Alexander L. V. Perkins-Kirkpatrick S. E. et al. (2019). Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6. doi: 10.3389/FMARS.2019.00734/BIBTEX
Oliver E. C. J. J. Donat M. G. Burrows M. T. Moore P. J. Smale D. A. Alexander L. V. et al. (2018). Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12. doi: 10.1038/s41467-018-03732-9
Pastor F. Khodayar S. (2023). Marine heat waves: Characterizing a major climate impact in the Mediterranean. Sci. Total Environ. 861, 160621. doi: 10.1016/J.SCITOTENV.2022.160621
Roberts S. D. Van Ruth P. D. Wilkinson C. Bastianello S. S. Bansemer M. S. (2019). Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in south Australia. Front. Mar. Sci. 6. doi: 10.3389/fmars.2019.00610
Sandler D. Harnik N. (2020). Future wintertime meridional wind trends through the lens of subseasonal teleconnections. Weather Clim. Dyn. 1, 427–443. doi: 10.5194/WCD-1-427-2020
Scannell H. A. Pershing A. J. Alexander M. A. Thomas A. C. Mills K. E. (2016). Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43, 2069–2076. doi: 10.1002/2015GL067308
Schlegel R. W. Darmaraki S. Benthuysen J. A. Filbee-Dexter K. Oliver E. C. J. (2021a). Marine cold-spells. Prog. Oceanogr. 198, 102684. doi: 10.1016/J.POCEAN.2021.102684
Schlegel R. W. Oliver E. C. J. Chen K. (2021b). Drivers of marine heatwaves in the northwest atlantic: the role of air–sea interaction during onset and decline. Front. Mar. Sci. 8. doi: 10.3389/FMARS.2021.627970/BIBTEX
Schlegel R. W. Oliver E. C. J. Wernberg T. Smit A. J. (2017). Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 151, 189–205. doi: 10.1016/J.POCEAN.2017.01.004
Schlegel R. Smit A. (2018). heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Software 3, 821. doi: 10.21105/JOSS.00821/STATUS.SVG
Selig E. R. Casey K. S. Bruno J. F. (2010). New insights into global patterns of ocean temperature anomalies: Implications for coral reef health and management. Glob. Ecol. Biogeogr. 19, 397–411. doi: 10.1111/J.1466-8238.2009.00522.X
Sen Gupta A. Thomsen M. Benthuysen J. A. Hobday A. J. Oliver E. Alexander L. V. et al. (2020). Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359. doi: 10.1038/s41598-020-75445-3
Smale D. A. Wernberg T. Oliver E. C. J. Thomsen M. Harvey B. P. Straub S. C. et al. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. doi: 10.1038/s41558-019-0412-1
Smith K. E. Burrows M. T. Hobday A. J. King N. G. Moore P. J. Sen Gupta A. et al. (2023). Biological impacts of marine heatwaves. Ann. Rev. Mar. Sci. 15, 119–145. doi: 10.1146/ANNUREV-MARINE-032122-121437
Smith K. E. Burrows M. T. Hobday A. J. Sen Gupta A. Moore P. J. Thomsen M. et al. (2021). Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Sci. (80-.). 374. doi: 10.1126/science.abj3593
Tinker J. Howes E. L. (2020). The impacts of climate change on temperature (air and sea), relevant to the coastal and marine environment around the UK. MCCIP Science Review. doi: 10.14465/2020.arc01.tem
Trainer V. L. Kudela R. M. Hunter M. V. Adams N. G. McCabe R. M. (2020). Climate extreme seeds a new domoic acid hotspot on the US west coast. Front. Clim. 0. doi: 10.3389/FCLIM.2020.571836
Trenberth K. E. Shea D. J. (2006). Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, 12704. doi: 10.1029/2006GL026894
Tuckett C. A. Wernberg T. (2018). High latitude corals tolerate severe cold spell. Front. Mar. Sci. 5. doi: 10.3389/FMARS.2018.00014/BIBTEX
van der Molen J. Pätsch J. (2022). An overview of Atlantic forcing of the North Sea with focus on oceanography and biogeochemistry. J. Sea Res. 189, 102281. doi: 10.1016/J.SEARES.2022.102281
Wang Y. Kajtar J. B. Alexander L. V. Pilo G. S. Holbrook N. J. (2022). Understanding the changing nature of marine cold-spells. Geophys. Res. Lett. 49, e2021GL097002. doi: 10.1029/2021GL097002
Wang F. Shao W. Yu H. Kan G. He X. Zhang D. et al. (2020). Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 8. doi: 10.3389/feart.2020.00014
Wilks D. S. (2011). Statistical methods in the atmospheric sciences (Cambridge, MA: Academic Press).
Winther N. G. Johannessen J. A. (2006). North Sea circulation: Atlantic inflow and its destination. J. Geophys. Res. 111, 12018. doi: 10.1029/2005JC003310
Yao Y. Wang C. (2022). Marine heatwaves and cold-spells in global coral reef zones. Prog. Oceanogr. 209, 102920. doi: 10.1016/J.POCEAN.2022.102920
Yao Y. Wang C. Fu Y. (2022). Global marine heatwaves and cold-spells in present climate to future projections. Earth’s Futur. 10, e2022EF002787. doi: 10.1029/2022EF002787
Zhao Z. Marin M. (2019). A MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Software 4, 1124. doi: 10.21105/joss.01124