[en] Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.
Disciplines :
Agriculture & agronomy
Author, co-author :
Zabel, Florian ; Department of Geography, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
Müller, Christoph ; Climate Resilience, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Elliott, Joshua; Center for Climate Systems Research, Columbia University, New York, NY, USA
Minoli, Sara ; Climate Resilience, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
Jägermeyr, Jonas ; Climate Resilience, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany ; Center for Climate Systems Research, Columbia University, New York, NY, USA ; NASA Goddard Institute for Space Studies, New York, NY, USA
Schneider, Julia M ; Department of Geography, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
Franke, James A ; Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA ; Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA
Moyer, Elisabeth; Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA ; Center for Robust Decision-making on Climate and Energy Policy (RDCEP), University of Chicago, Chicago, IL, USA
Dury, Marie ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
François, Louis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Folberth, Christian ; International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
Liu, Wenfeng ; Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
Pugh, Thomas A M ; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK ; Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
Olin, Stefan ; Lund University, Lund, Sweden
Rabin, Sam S ; Institute of Meteorology and Climate Research - Atmospheric Environmental Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Mauser, Wolfram ; Department of Geography, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
Hank, Tobias ; Department of Geography, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
Ruane, Alex C ; NASA Goddard Institute for Space Studies, New York, NY, USA
Asseng, Senthold ; School of Life Sciences, Technical University of Munich (TUM), München, Germany
BMBF - Bundesministerium für Bildung und Forschung Open Philanthropy Project
Funding text :
F. Z. and J.M.S. acknowledge financial support from the BioSDG (grant no. 031B0788B) and the BioNex Project (grant no. 031B0230B) funded by the German Federal Ministry of Education and Research. J.J was supported by the Open Philanthropy Project. S.S.R. acknowledges funding from the ISIpedia project (grant no. 01LS1711B) funded by the European Research Area for Climate Services. RDCEP is funded by NSF (grant no. SES‐1463644) through the Decision Making Under Uncertainty program. James A. Franke was supported by the NSF NRT program (grant no. DGE‐1735359) and the NSF Graduate Research Fellowship Program (grant no. DGE‐1746045). Open Access funding enabled and organized by Projekt DEAL.
Abdulai, A. L., Kouressy, M., Vaksmann, M., Asch, F., Giese, M., & Holger, B. (2012). Latitude and date of sowing influences phenology of photoperiod-sensitive sorghums. Journal of Agronomy and Crop Science, 198(5), 340–348. https://doi.org/10.1111/j.1439-037X.2012.00523.x
Abid, M., Scheffran, J., Schneider, U. A., & Elahi, E. (2019). Farmer perceptions of climate change, observed trends and adaptation of agriculture in Pakistan. Environmental Management, 63(1), 110–123. https://doi.org/10.1007/s00267-018-1113-7
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470
Asseng, S., Martre, P., Maiorano, A., Rötter, R. P., O’Leary, G. J., Fitzgerald, G. J., Girousse, C., Motzo, R., Giunta, F., Babar, M. A., Reynolds, M. P., Kheir, A. M. S., Thorburn, P. J., Waha, K., Ruane, A. C., Aggarwal, P. K., Ahmed, M., Balkovič, J., Basso, B., … Ewert, F. (2019). Climate change impact and adaptation for wheat protein. Global Change Biology, 25(1), 155–173. https://doi.org/10.1111/gcb.14481
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
Bedeke, S., Vanhove, W., Gezahegn, M., Natarajan, K., & Van Damme, P. (2019). Adoption of climate change adaptation strategies by maize-dependent smallholders in Ethiopia. NJAS - Wageningen Journal of Life Sciences, 88, 96–104. https://doi.org/10.1016/j.njas.2018.09.001
Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Mark, F., Manuel, F., & Adrian, S. (2011). The ERA-Interim archive Version 2.0. Shinfield Park, Reading. Retrieved from https://www.ecmwf.int/node/8174
Boote, K., Jones, J., & Pickering, N. (1996). Potential uses and limitations of crop models. Agronomy Journal, 88, 704–716. https://doi.org/10.2134/agronj1996.00021962008800050005x
Butler, E. E., & Huybers, P. (2013). Adaptation of US maize to temperature variations. Nature Climate Change, 3(1), 68–72. https://doi.org/10.1038/nclimate1585
Ceccarelli, S., Grando, S., Maatougui, M., Michael, M., Slash, M., Haghparast, R., Rahmanian, M., Taheri, A., Al-yassin, A., Benbelkacem, A., Labdi, M., Mimoun, H., & Nachit, M. (2010). Plant breeding and climate changes. The Journal of Agricultural Science, 148(6), 627–637. https://doi.org/10.1017/S0021859610000651
Challinor, A. J., Koehler, A. K., Ramirez-Villegas, J., Whitfield, S., & Das, B. (2016). Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nature Climate Change, 6(10), 954–958. https://doi.org/10.1038/nclimate3061
Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R., & Chhetri, N. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4(4), 287–291. https://doi.org/10.1038/nclimate2153
Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., Bindi, M., & Asseng, S. (2017). Contribution of crop models to adaptation in wheat. Trends in Plant Science, 22(6), 472–490. https://doi.org/10.1016/j.tplants.2017.02.003
Cober, E. R., & Morrison, M. J. (2010). Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theoretical and Applied Genetics, 120(5), 1005–1012. https://doi.org/10.1007/s00122-009-1228-6
Degife, A. W., Zabel, F., & Mauser, W. (2021). Climate change impacts on potential maize yields in Gambella region, Ethiopia. Regional Environmental Change. Accepted. https://doi.org/10.1007/s10113-021-01773-3
Delzeit, R., Klepper, G., Zabel, F., & Mauser, W. (2018). Global economic–biophysical assessment of midterm scenarios for agricultural markets—Biofuel policies, dietary patterns, cropland expansion, and productivity growth. Environmental Research Letters, 13(2), 025003. https://doi.org/10.1088/1748-9326/aa9da2
Deryng, D., Elliott, J., Folberth, C., Muller, C., Pugh, T. A. M., Boote, K. J., & Rosenzweig, C. (2016). Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Climate Change, 6(8), 786–790. https://doi.org/10.1038/nclimate2995
Elliott, J., Müller, C., Deryng, D., Chryssanthacopoulos, J., Boote, K. J., Büchner, M., Foster, I., Glotter, M., Heinke, J., Iizumi, T., Izaurralde, R. C., Mueller, N. D., Ray, D. K., Rosenzweig, C., Ruane, A. C., & Sheffield, J. (2015). The Global Gridded Crop Model Intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geoscientific Model Development, 8(2), 261–277. https://doi.org/10.5194/gmd-8-261-2015
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., Olesen, J. E., van Ittersum, M. K., Janssen, S., Rivington, M., Semenov, M. A., Wallach, D., Porter, J. R., Stewart, D., Verhagen, J., Gaiser, T., Palosuo, T., Tao, F., Nendel, C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling & Software, 72, 287–303. https://doi.org/10.1016/j.envsoft.2014.12.003
FAOSTAT. (2020). FAOSTAT Land USE module. Retrieved from http://www.fao.org/faostat/en/#data/QC
Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., Knauf, V. C., Lobell, D., Mazur, B. J., Molden, D., Reynolds, M. P., Ronald, P. C., Rosegrant, M. W., Sanchez, P. A., Vonshak, A., & Zhu, J.-K. (2010). Radically rethinking agriculture for the 21st century. Science, 327(5967), 833–834. https://doi.org/10.1126/science.1186834
Fitzpatrick, M. C., & Dunn, R. R. (2019). Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nature Communications, 10(1), 614. https://doi.org/10.1038/s41467-019-08540-3
Franke, J., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Snyder, A., Dury, M., Falloon, P., Folberth, C., François, L., Hank, T., Izaurralde, R. C., Jacquemin, I., Jones, C., Li, M., Liu, W., Olin, S., Phillips, M., & Pugh, T. A. M. … Moyer, E. (2020). The GGCMI phase 2 emulators: Global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0). Geoscientific Model Development, 2020, 1–24. https://doi.org/10.5194/gmd-13-3995-2020
Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Balkovic, J., Ciais, P., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Hoffmann, M., Izaurralde, R. C., Jacquemin, I., Jones, C., Khabarov, N., Koch, M., … Moyer, E. J. (2020). The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geoscientific Model Development, 13(5), 2315–2336. https://doi.org/10.5194/gmd-13-2315-2020
Garcia-Molina, A., & Leister, D. (2020). Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. Nature Plants, 6(1), 9–12. https://doi.org/10.1038/s41477-019-0572-z
Hartkamp, A. D. (2001). Maize production environments revisited: A GIS-based approach. Natural Resources Group, CIMMYT.
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19691. https://doi.org/10.1073/pnas.0701890104
Jägermeyr, J., Robock, A., Elliott, J., Müller, C., Xia, L., Khabarov, N., Folberth, C., Schmid, E., Liu, W., Zabel, F., Rabin, S. S., Puma, M. J., Heslin, A., Franke, J., Foster, I., Asseng, S., Bardeen, C. G., Toon, O. B., & Rosenzweig, C. (2020). A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 7071–7081. https://doi.org/10.1073/pnas.1919049117
Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Global Ecology and Biogeography, 19(6), 769–782. https://doi.org/10.1111/j.1466-8238.2010.00563.x
Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., Martre, P., Ruane, A. C., Wallach, D., Jones, J. W., Rosenzweig, C., Aggarwal, P. K., Alderman, P. D., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A., Deryng, D., … Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 1130–1136. https://doi.org/10.1038/nclimate3115.
Lobell, D. B. (2014). Climate change adaptation in crop production: Beware of illusions. Global Food Security, 3(2), 72–76. https://doi.org/10.1016/j.gfs.2014.05.002.
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607. https://doi.org/10.1126/science.1152339
Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 161(1), 56–66. https://doi.org/10.1016/j.cell.2015.03.019.
Mahony, C. R., Cannon, A. J., Wang, T., & Aitken, S. N. (2017). A closer look at novel climates: New methods and insights at continental to landscape scales. Global Change Biology, 23(9), 3934–3955. https://doi.org/10.1111/gcb.13645
Marshall-Colón, A., & Kliebenstein, D. J. (2019). Plant networks as traits and hypotheses: Moving beyond description. Trends in Plant Science, 24(9), 840–852. https://doi.org/10.1016/j.tplants.2019.06.003
Marshall-Colon, A., Long, S. P., Allen, D. K., Allen, G., Beard, D. A., Benes, B., von Caemmerer, S., Christensen, A. J., Cox, D. J., Hart, J. C., Hirst, P. M., Kannan, K., Katz, D. S., Lynch, J. P., Millar, A. J., Panneerselvam, B., Price, N. D., Prusinkiewicz, P., Raila, D., … Zhu, X.-G. (2017). Crops in silico: Generating virtual crops using an integrative and multi-scale modeling platform. Frontiers in Plant Science, 8(786), https://doi.org/10.3389/fpls.2017.00786
Mbow, C., Rosenzweig, C., Tubiello, F., Benton, T., Herrero, M., Pradhan, P., Barioni, L., Krishnapillai, M., Liwenga, E., Rivera-Ferre, M., Sapkota, T., & Xu, Y. (2019). Food security. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, … J. Malley (Eds.), Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (pp. 437–550). https://www.ipcc.ch/site/assets/uploads/sites/4/2021/02/08_Chapter-5_3.pdf
McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291–300. https://doi.org/10.1016/S0168-1923(97)00027-0
Minoli, S., Egli, D. B., Rolinski, S., & Müller, C. (2019). Modelling cropping periods of grain crops at the global scale. Global and Planetary Change, 174, 35–46. https://doi.org/10.1016/j.gloplacha.2018.12.013
Minoli, S., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Zabel, F., Dury, M., Folberth, C., François, L., Hank, T., Jacquemin, I., Liu, W., Olin, S., & Pugh, T. A. M. (2019). Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation. Earth's Future, 7(12), 1464–1480. https://doi.org/10.1029/2018ef001130
Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 4(7), 610–614. https://doi.org/10.1038/Nclimate2228
Morales-Castilla, I., García de Cortázar-Atauri, I., Cook, B. I., Lacombe, T., Parker, A., van Leeuwen, C., Nicholas, K. A., & Wolkovich, E. M. (2020). Diversity buffers winegrowing regions from climate change losses. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 2864–2869. https://doi.org/10.1073/pnas.1906731117
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., … Yang, H. (2017). Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 10(4), 1403–1422. https://doi.org/10.5194/gmd-10-1403-2017
Müller, C., Franke, J., Jägermeyr, J., Ruane, A. C., Elliott, J., Moyer, E., Heinke, J., Falloon, P. D., Folberth, C., Francois, L., Hank, T., Izaurralde, R. C., Jacquemin, I., Liu, W., Olin, S., Pugh, T. A. M., Williams, K., & Zabel, F. (2021). Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environmental Research Letters, 16(3), 034040. https://doi.org/10.1088/1748-9326/abd8fc
Nelson, G., Rosegrant, M., Koo, J., Robertson, R., Sulser, T., Zhu, T., & Lee, D. (2009). Climate change: Impact on agriculture and costs of adaptation. Food Policy Report, 21, IFPRI. https://doi.org/10.2499/0896295354
Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason d’Croz, D., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., … Willenbockel, D. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3274–3279. https://doi.org/10.1073/pnas.1222465110
Parent, B., Leclere, M., Lacube, S., Semenov, M. A., Welcker, C., Martre, P., & Tardieu, F. (2018). Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10642–10647. https://doi.org/10.1073/pnas.1720716115
Peng, B., Guan, K., Tang, J., Ainsworth, E. A., Asseng, S., Bernacchi, C. J., Cooper, M., Delucia, E. H., Elliott, J. W., Ewert, F., Grant, R. F., Gustafson, D. I., Hammer, G. L., Jin, Z., Jones, J. W., Kimm, H., Lawrence, D. M., Li, Y., Lombardozzi, D. L., … Zhou, W. (2020). Towards a multiscale crop modelling framework for climate change adaptation assessment. Nature Plants, 6(4), 338–348. https://doi.org/10.1038/s41477-020-0625-3
Pongratz, J., Lobell, D. B., Cao, L., & Caldeira, K. (2012). Crop yields in a geoengineered climate. Nature Climate Change, 2(2), 101–105. https://doi.org/10.1038/nclimate1373
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B., & Travasso, M. I. (2014). Food security and food production systems. In: C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge University Press.
Portmann, F. T., Siebert, S., & Döll, P. (2010). MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24(1), https://doi.org/10.1029/2008GB003435
Pugh, T., Müller, C., Elliott, J., Deryng, D., Folberth, C., Olin, S., Schmid, E., & Arneth, A. (2016). Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nature Communications, 7, 12608. https://doi.org/10.1038/ncomms12608
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989. https://doi.org/10.1038/ncomms6989
Revilla, P., Rodríguez, V. M., Ordás, A., Rincent, R., Charcosset, A., Giauffret, C., Melchinger, A. E., Schön, C.-C., Bauer, E., Altmann, T., Brunel, D., Moreno-González, J., Campo, L., Ouzunova, M., Álvarez, Á., Ruíz de Galarreta, J. I., Laborde, J., & Malvar, R. A. (2016). Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biology, 16(1), 127. https://doi.org/10.1186/s12870-016-0816-2
Rickards, L., & Howden, S. M. (2012). Transformational adaptation: Agriculture and climate change. Crop and Pasture Science, 63(3), 240–250. https://doi.org/10.1071/CP11172
Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O'Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., & Verburg, P. H. (2018). Modelling feedbacks between human and natural processes in the land system. Earth System Dynamics, 9, 895–914. https://doi.org/10.5194/esd-9-895-2018
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., & Winter, J. M. (2013). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 170, 166–182. https://doi.org/10.1016/j.agrformet.2012.09.011
Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233–248. https://doi.org/10.1016/j.agrformet.2014.09.016
Ruane, A. C., Rosenzweig, C., Asseng, S., Boote, K. J., Elliott, J., Ewert, F., & Thorburn, P. J. (2017). An AgMIP framework for improved agricultural representation in IAMs. Environmental Research Letters: ERL, 12(12), 125003. https://doi.org/10.1088/1748-9326/aa8da6.
Sloat, L. L., Davis, S. J., Gerber, J. S., Moore, F. C., Ray, D. K., West, P. C., & Mueller, N. D. (2020). Climate adaptation by crop migration. Nature Communications, 11(1), 1243. https://doi.org/10.1038/s41467-020-15076-4.
Song, W., Sun, S., Ibrahim, S. E., Xu, Z., Wu, H., Hu, X., Jia, H., Cheng, Y., Yang, Z., Jiang, S., Wu, T., Sinegovskii, M., Sapey, E., Nepomuceno, A., Jiang, B., Hou, W., Sinegovskaya, V., Wu, C., Gai, J., & Han, T. (2019). Standard cultivar selection and digital quantification for precise classification of maturity groups in soybean. Crop Science, 59(5), 1997–2006. https://doi.org/10.2135/cropsci2019.02.0095
Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818–822. https://doi.org/10.1126/science.1183700
Waha, K., van Bussel, L. G. J., Müller, C., & Bondeau, A. (2012). Climate-driven simulation of global crop sowing dates. Global Ecology and Biogeography, 21(2), 247–259. https://doi.org/10.1111/j.1466-8238.2011.00678.x
Zabel, F., Delzeit, R., Schneider, J. M., Seppelt, R., Mauser, W., & Václavík, T. (2019). Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature Communications, 10(1), 2844. https://doi.org/10.1038/s41467-019-10775-z
Zabel, F., Putzenlechner, B., & Mauser, W. (2014). Global agricultural land resources – A high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS One, 9(9), e107522. https://doi.org/10.1371/journal.pone.0107522
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. https://doi.org/10.1073/pnas.1701762114
Zhou, G., & Wang, Q. (2018). A new nonlinear method for calculating growing degree days. Scientific Reports, 8(1), 10149. https://doi.org/10.1038/s41598-018-28392-z