Baddouh, M., Meyers, S.R., Carroll, A.R., Beard, B.L., Johnson, C.M., Lacustrine 87Sr/86Sr as a tracer to reconstruct Milankovitch forcing of the Eocene hydrologic cycle. Earth Planet. Sci. Lett. 448 (2016), 62–68, 10.1016/j.epsl.2016.05.007.
Berger, A., Loutre, M.F., Laskar, J., Stability of the astronomical frequencies over the Earth's history for paleoclimate studies. Science 255 (1992), 560–566, 10.1126/science.255.5044.560.
Bond, G.C., Kominz, M.A., Beavan, J., Evidence for orbital forcing of Middle Cambrian peritidal cycles: Wah Wah range, south-central Utah. Kans. Geol. Surv. Bull. 233 (1991), 294–317.
Da Silva, A.C., De Vleeschouwer, D., Boulvain, F., Claeys, P., Fagel, N., Humblet, M., Mabille, C., Michel, J., Sardar Abadi, M., Pas, D., Dekkers, M.J., Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks – merits and pitfalls: examples from the Devonian in Belgium. Mar. Pet. Geol. 46 (2013), 173–189, 10.1016/j.marpetgeo.2013.06.012.
Da Silva, A.C., Dekkers, M.J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., Hilgen, F.J., Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: REPLY. Geology 47 (2019), e489–e490, 10.1130/G46732Y.1.
Da Silva, A.C., Hladil, J., Chadimová, L., Slavík, L., Hilgen, F.J., Bábek, O., Dekkers, M.J., Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian–Pragian sediments (Prague Synform, Czech Republic). Earth Planet. Sci. Lett. 455 (2016), 125–139, 10.1016/j.epsl.2016.09.009.
Daher, H., Arbic, B.K., Williams, J.G., Ansong, J.K., Boggs, D.H., Müller, M., Schindelegger, M., Austermann, J., Cornuelle, B.D., Crawford, E.B., Long-term Earth-Moon evolution with high-level orbit and ocean tide models. J. Geophys. Res., Planets, 126, 2021, e2021JE006875.
Darwin, G.H., XIII. On the precession of a viscous spheroid, and on the remote history of the Earth. Philos. Trans. R. Soc. Lond. 170 (1879), 447–538, 10.1098/rstl.1879.0073.
De Vleeschouwer, D., Boulvain, F., Da Silva, A.-C., Pas, D., Labaye, C., Claeys, P., The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium). Geol. Soc. (Lond.) Spec. Publ. 414 (2015), 245–256, 10.1144/SP414.3.
De Vleeschouwer, D., Parnell, A.C., Reducing time-scale uncertainty for the Devonian by integrating astrochronology and Bayesian statistics. Geology 42 (2014), 491–494, 10.1130/G35618.1.
De Vleeschouwer, D., Penman, D.E., D'haenens, S., Wu, F., Westerhold, T., Vahlenkamp, M., Cappelli, C., Agnini, C., Kordesch, W.E.C., King, D.J., van der Ploeg, R., Pälike, H., Turner, S.K., Wilson, P., Norris, R.D., Zachos, J.C., Bohaty, S.M., Hull, P.M., North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth-Moon system. Paleoceanogr. Paleoclimatol., 38, 2023, e2022PA004555, 10.1029/2022PA004555.
De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology, 2017, G38663.1, 10.1130/G38663.1.
de Winter, N.J., Goderis, S., Van Malderen, S.J.M., Sinnesael, M., Vansteenberge, S., Snoeck, C., Belza, J., Vanhaecke, F., Claeys, P., Subdaily-scale chemical variability in a Torreites sanchezi rudist shell: implications for rudist paleobiology and the Cretaceous day-night cycle. Paleoceanogr. Paleoclimatol., 35, 2020, e2019PA003723, 10.1029/2019PA003723.
Ebisuzaki, W., A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate 10 (1997), 2147–2153, 10.1175/1520-0442(1997)010%3C2147:AMTETS%3E2.0.CO;2.
Fang, J., Wu, H., Fang, Q., Shi, M., Zhang, S., Yang, T., Li, H., Cao, L., Cyclostratigraphy of the global stratotype section and point (GSSP) of the basal Guzhangian Stage of the Cambrian Period. Palaeogeogr. Palaeoclimatol. Palaeoecol., 540, 2020, 109530, 10.1016/j.palaeo.2019.109530.
Fang, Q., Wu, H., Hinnov, L.A., Wang, X., Yang, T., Li, H., Zhang, S., A record of astronomically forced climate change in a late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China. Sediment. Geol. 341 (2016), 163–174, 10.1016/j.sedgeo.2016.06.002.
Farhat, M., Auclair-Desrotour, P., Boué, G., Laskar, J., The resonant tidal evolution of the Earth-Moon distance. Astron. Astrophys., 665, 2022, L1, 10.1051/0004-6361/202243445.
Fischer, A.G., Herbert, T.D., Napoleone, G., Silva, I.P., Ripepe, M., Albian Pelagic Rhythms (Piobbico Core). J. Sediment. Res., 61, 1991.
Gerstenkorn, H., On the controversy over the effect of tidal friction upon the history of the Earth-Moon system. Icarus 7 (1967), 160–167, 10.1016/0019-1035(67)90060-7.
Green, J.A.M., Huber, M., Waltham, D., Buzan, J., Wells, M., Explicitly modelled deep-time tidal dissipation and its implication for Lunar history. Earth Planet. Sci. Lett. 461 (2017), 46–53, 10.1016/j.epsl.2016.12.038.
Heubeck, C., Biasing, S., Grund, M., Drabon, N., Homann, M., Nabhan, S., Geological constraints on Archean (3.22 Ga) coastal-zone processes from the Dycedale Syncline, Barberton Greenstone Belt. South Afr. J. Geol. 119 (2016), 495–518, 10.2113/gssajg.119.3.495.
Hilgen, F.J., Hinnov, L.A., Aziz, H.A., Abels, H.A., Batenburg, S., Bosmans, J.H.C., de Boer, B., Hüsing, S.K., Kuiper, K.F., Lourens, L.J., Rivera, T., Tuenter, E., Van de Wal, R.S.W., Wotzlaw, J.-F., Zeeden, C., Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy. Geol. Soc. (Lond.) Spec. Publ. 404 (2015), 157–197, 10.1144/SP404.12.
Hinnov, L.A., Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences. Geol. Soc. Am. Bull. 125 (2013), 1703–1734, 10.1130/B30934.1.
Hinnov, L.A., Hilgen, F.J., Cyclostratigraphy and astrochronology. Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., (eds.) The Geologic Time Scale, 2012, Elsevier, Boston, 63–83 Chapter 4.
Huang, H., Gao, Y., Jones, M.M., Tao, H., Carroll, A.R., Ibarra, D.E., Wu, H., Wang, C., Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 550, 2020, 109735, 10.1016/j.palaeo.2020.109735.
Huybers, P., Aharonson, O., Orbital tuning, eccentricity, and the frequency modulation of climatic precession. Paleoceanography, 25, 2010, 10.1029/2010PA001952.
Lantink, M.L., Davies, J.H.F.L., Ovtcharova, M., Hilgen, F.J., Milankovitch cycles in banded iron formations constrain the Earth– Moon system 2.46 billion years ago. Proc. Natl. Acad. Sci., 119, 2022, e2117146119, 10.1073/pnas.2117146119.
Laskar, J., Fienga, A., Gastineau, M., Manche, H., La2010: a new orbital solution for the long-term motion of the Earth. Astron. Astrophys., 532, 2011, A89, 10.1051/0004-6361/201116836.
Laskar, J., Gastineau, M., Delisle, J.-B., Farrés, A., Fienga, A., Strong chaos induced by close encounters with Ceres and Vesta. Astron. Astrophys., 532, 2011, L4, 10.1051/0004-6361/201117504.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428 (2004), 261–285, 10.1051/0004-6361:20041335.
Lourens, L.J., Wehausen, R., Brumsack, H.J., Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409 (2001), 1029–1033, 10.1038/35059062.
Mabille, C., Boulvain, F., Les Monts de Baileux section: detailed sedimentology and magnetic susceptibility of Hanonet, Trois-Fontaines and Terres d'Haurs formations (Eifelian-Givetian boundary and Lower Givetian, SW Belgium). Geol. Belg., 11, 2008.
Maurice, M., Tosi, N., Schwinger, S., Breuer, D., Kleine, T., A long-lived magma ocean on a young Moon. Sci. Adv., 6, 2020, eaba8949, 10.1126/sciadv.aba8949.
Meyers, S.R., The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization. Paleoceanography 30 (2015), 1625–1640, 10.1002/2015PA002850.
Meyers, S.R., astrochron: an R Package for Astrochronology Version 0.9., 2014.
Meyers, S.R., Malinverno, A., Proterozoic Milankovitch cycles and the history of the solar system. Proc. Natl. Acad. Sci., 201717689, 2018, 10.1073/pnas.1717689115.
Pas, D., Da Silva, A.-C., Devleeschouwer, X., De Vleeschouwer, D., Cornet, P., Labaye, C., Boulvain, F., Insights into a million-year-scale Rhenohercynian carbonate platform evolution through a multi-disciplinary approach: example of a Givetian carbonate record from Belgium. Geol. Mag. 154 (2017), 707–739, 10.1017/S0016756816000261.
Pas, D., Hinnov, L., Day, J.E. Jed, Kodama, K., Sinnesael, M., Liu, W., Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth Planet. Sci. Lett. 488 (2018), 102–114, 10.1016/j.epsl.2018.02.010.
Ruddiman, W.F., Earth's Climate: Past and Future. 2001, Freeman.
Shackleton, N.J., Hagelberg, T.K., Crowhurst, S.J., Evaluating the success of astronomical tuning: pitfalls of using coherence as a criterion for assessing pre-Pleistocene timescales. Paleoceanography 10 (1995), 693–697, 10.1029/95PA01454.
Sonett, C.P., Chan, M.A., Neoproterozoic Earth-Moon dynamics: rework of the 900 Ma Big Cottonwood Canyon tidal laminae. Geophys. Res. Lett. 25 (1998), 539–542, 10.1029/98GL00048.
Sørensen, A.L., Nielsen, A.T., Thibault, N., Zhao, Z., Schovsbo, N.H., Dahl, T.W., Astronomically forced climate change in the late Cambrian. Earth Planet. Sci. Lett., 548, 2020, 116475, 10.1016/j.epsl.2020.116475.
Tyler, R.H., On the tidal history and future of the Earth–Moon orbital system. Planet. Sci. J., 2, 2021, 70, 10.3847/psj/abe53f.
Walker, J.C.G., Zahnle, K.J., Lunar nodal tide and distance to the Moon during the Precambrian. Nature 320 (1986), 600–602, 10.1038/320600a0.
Waltham, D., Milankovitch period uncertainties and their impact on cyclostratigraphy. J. Sediment. Res. 85 (2015), 990–998, 10.2110/jsr.2015.66.
Webb, D.J., Tides and tidal friction in a hemispherical ocean centred at the equator. Geophys. J. Int. 61 (1980), 573–600, 10.1111/j.1365-246X.1980.tb04833.x.
Williams, G.E., Geological constraints on the Precambrian history of Earth's rotation and the Moon's orbit. Rev. Geophys. 38 (2000), 37–59, 10.1029/1999RG900016.
Williams, G.E., Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophys. Res. Lett. 24 (1997), 421–424, 10.1029/97GL00234.
Williams, G.E., Milankovitch-band cyclicity in bedded halite deposits contemporaneous with Late Ordovician-Early Silurian glaciation, Canning Basin, Western Australia. Earth Planet. Sci. Lett. 103 (1991), 143–155, 10.1016/0012-821X(91)90156-C.
Williams, G.E., Tidal rhythmites: geochronometers for the ancient Earth-Moon system. Episodes 12 (1989), 162–171.
Wu, H., Fang, Q., Wang, X., Hinnov, L.A., Qi, Y., Shen, S., Yang, T., Li, H., Chen, J., Zhang, S., An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan realm. Geology, 2018, 10.1130/G45461.1.
Wu, H., Zhang, S., Hinnov, L.A., Jiang, G., Feng, Q., Li, H., Yang, T., Time-calibrated Milankovitch cycles for the late Permian. Nat. Commun., 4, 2013, 2452, 10.1038/ncomms3452.
Zachos, J.C., Proc. ODP, Init. Repts., 208: Coll. Stn. TX Ocean Drill. Program 208. https://doi.org/10.2973/odp.proc.ir.208.2004, 2004.
Zeeden, C., Hilgen, F., Westerhold, T., Lourens, L., Röhl, U., Bickert, T., Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369 (2013), 430–451, 10.1016/j.palaeo.2012.11.009.
Zeeden, C., Hilgen, F.J., Hüsing, S.K., Lourens, L.L., The Miocene astronomical time scale 9–12 Ma: new constraints on tidal dissipation and their implications for paleoclimatic investigations. Paleoceanography, 29, 2014, 2014PA002615, 10.1002/2014PA002615.
Zeeden, C., Meyers, S.R., Hilgen, F.J., Lourens, L.J., Laskar, J., Time scale evaluation and the quantification of obliquity forcing. Quat. Sci. Rev. 209 (2019), 100–113, 10.1016/j.quascirev.2019.01.018.
Zhang, S., Wang, X., Hammarlund, E.U., Wang, H., Costa, M.M., Bjerrum, C.J., Connelly, J.N., Zhang, B., Bian, L., Canfield, D.E., Orbital forcing of climate 1.4 billion years ago. Proc. Natl. Acad. Sci. 112 (2015), E1406–E1413, 10.1073/pnas.1502239112.
Zhong, Y., Wu, H., Fan, J., Fang, Q., Shi, M., Zhang, S., Yang, T., Li, H., Cao, L., Late Ordovician obliquity-forced glacio-eustasy recorded in the Yangtze Block, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 540, 2020, 109520, 10.1016/j.palaeo.2019.109520.
Zhou, M., Wu, H., Hinnov, L.A., Fang, Q., Zhang, S., Yang, T., Shi, M., Empirical reconstruction of Earth-moon and solar system dynamical parameters for the past 2.5 billion years from cyclostratigraphy. Geophys. Res. Lett., 49, 2022, e2022GL098304, 10.1029/2022GL098304.
Berger, A., Loutre, M.F., Precession, eccentricity, obliquity, insolation and paleoclimates. Duplessy, J.-C., Spyridakis, M.-T., (eds.) Long-Term Climatic Variations, 1994, Springer Berlin Heidelberg, Berlin, Heidelberg, 107–151.