Space and Planetary Science; Geophysics; Jupiter; Aurora; Juno
Abstract :
[en] Juno's arrival at Jupiter in 2016 revealed unprecedented details about Jupiter's ultraviolet aurorae thanks to its unique suite of remote sensing and in situ instruments. Here we present results from in situ observations during Juno flybys above specific bright auroral spots in Jupiter's polar aurora. We compare data observed by Juno-UVS, JEDI, JADE, Waves, and MAG instruments when Juno was magnetically connected to bright polar auroral spots (or their immediate vicinity) during perijove 3 (PJ3), PJ15, and PJ33. The highly energetic particles observed by JEDI show enhancements dominated by upward electrons, which suggests that the particle acceleration region takes place below the spacecraft. Moreover, brightness and upward particle flux were higher for the northern bright spot in PJ3 than the southern spots found in PJ15 and PJ33. In addition, we notice the intensification of whistler-mode waves at the time of the particle enhancements, suggesting that wave-particle interactions contribute to the acceleration of particles that cause the UV aurorae. The MAG data reveal magnetic perturbations during the PJ3 spot detection by Juno, which suggests the presence of significant field-aligned electric currents. While the stable positions of the bright spots in System III suggest that the phenomenon is fixed to the planet's rotation, the presence of field-aligned currents leaves the possibility of an origin rooted much farther in the magnetosphere.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Haewsantati, Kamolporn ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Ph.D. program in Physics Department of Physics and Materials Science Faculty of Science Chiang Mai University Chiang Mai Thailand ; National Astronomical Research Institute of Thailand (Public Organization) Chiang Mai Thailand
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Wannawichian, S. ; National Astronomical Research Institute of Thailand (Public Organization) Chiang Mai Thailand ; Department of Physics and Materials Science Faculty of Science Chiang Mai University Chiang Mai Thailand
Gladstone, G. R.; Southwest Research Institute San Antonio Texas USA
Hue, V. ; Southwest Research Institute San Antonio Texas USA ; Aix‐Marseille Université CNRS CNES Institut Origines LAM Marseille France
Greathouse, T. K.; Southwest Research Institute San Antonio Texas USA
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Key Laboratory of Earth and Planetary Physics Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Guo, Ruilong ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) ; Laboratory of Optical Astronomy and Solar‐Terrestrial Environment Institute of Space Sciences School of Space Science and Physics Shandong University Weihai Shandong China
Elliott, S. ; Department of Physics and Astronomy University of Iowa Iowa City IA USA ; School of Physics and Astronomy University of Minnesota Minneapolis MN USA
Mauk, B. H. ; The Johns Hopkins University Applied Physics Laboratory Laurel MD USA
Clark, G. ; The Johns Hopkins University Applied Physics Laboratory Laurel MD USA
Gershman, D. ; NASA Goddard Space Flight Center Greenbelt MD USA
Kotsiaros, S. ; Technical University of Denmark (DTU) DTU Space Kongens Lyngby Denmark
Kurth, W. S. ; Department of Physics and Astronomy University of Iowa Iowa City IA USA
Connerney, J. ; NASA Goddard Space Flight Center Greenbelt MD USA
Szalay, J. R. ; Department of Astrophysical Sciences Princeton University Princeton NJ USA
Phriksee, A.; National Astronomical Research Institute of Thailand (Public Organization) Chiang Mai Thailand
All data used herein can be found in the Planetary Data System (PDS) (https://pds.nasa.gov). Ultraviolet Spectrograph (UVS) data can be obtained from https://pds-atmospheres.nmsu.edu/cgi-bin/getdir.pl?dir=DATA&volume=jnouvs_3001 (Trantham, 2014). Waves survey data can be found in https://pds.nasa.gov/ds-view/pds/viewDataset.jsp?dsid=JNO-E/J/SS-WAV-3-CDR-SRVFULL-V2.0 (Kurth & Piker, 2022). Juno Magnetometer data can be found in https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://PPI/JNO-J-3-FGM-CAL-V1.0 (Connerney, 2022). JEDI data can be obtained from https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://PPI/JNO-J-JED-3-CDR-V1.0 (Mauk, 2022). Jovian Auroral Distributions Experiment data may be found in https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://PPI/JNO-J_SW-JAD-3-CALIBRATED-V1.0 (Allegrini et al., 2022).
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian Infrared Auroral Mapper. Space Science Reviews, 213(1), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter’s main auroral emission. Journal of Geophysical Research: Space Physics, 125(4), e2019JA027693. https://doi.org/10.1029/2019JA027693
Allegrini, F., Wilson, R., Ebert, R., & Loeffler, C. (2022). Juno J/SW Jovian auroral distribution calibrated V1.0 [Dataset]. NASA Planetary Data System: Planetary Plasma Interactions Node. https://doi.org/10.17189/1519715
Arridge, C. S., Jasinski, J. M., Achilleos, N., Bogdanova, Y. V., Bunce, E. J., Cowley, S. W. H., et al. (2016). Cassini observations of Saturn’s southern polar cusp. Journal of Geophysical Research: Space Physics, 121(4), 3006–3030. https://doi.org/10.1002/2015JA021957
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bonfond, B., Gladstone, G. R., Grodent, D., Gérard, J.-C., Greathouse, T. K., Hue, V., et al. (2018). Bar code events in the Juno-UVS data: Signature ∼10 MeV electron microbursts at Jupiter. Geophysical Research Letters, 45(22), 12108–12115. https://doi.org/10.1029/2018GL080490
Bonfond, B., Gustin, J., Gérard, J.-C., Grodent, D., Radioti, A., Palmaerts, B., et al. (2015). The far-ultraviolet main auroral emission at Jupiter – Part 2: Vertical emission profile. Annales Geophysicae, 33(10), 1211–1219. https://doi.org/10.5194/angeo-33-1211-2015
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J.-C., Matar, J., et al. (2021). Are dawn storms Jupiter’s auroral substorms? AGU Advances, 2(1), e2020AV000275. https://doi.org/10.1029/2020AV000275
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., et al. (2017a). Energetic particle signatures of magnetic field-aligned potentials over Jupiter’s polar regions. Geophysical Research Letters, 44(17), 8703–8711. https://doi.org/10.1002/2017GL074366
Clark, G., Mauk, B. H., Paranicas, C., Haggerty, D., Kollmann, P., Rymer, A., et al. (2017b). Observation and interpretation of energetic ion conics in Jupiter’s polar magnetosphere. Geophysical Research Letters, 44(10), 4419–4425. https://doi.org/10.1002/2016GL072325
Connerney, J. E. P. (2022). Juno MAG Calibrated Data J V1.0 [Dataset]. NASA Planetary Data System: Planetary Plasma Interactions Node. https://doi.org/10.17189/1519711
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. (2018). A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45(6), 2590–2596. https://doi.org/10.1002/2018GL077312
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno Era. Journal of Geophysical Research: Space Physics, 125(10), e2020JA028138. https://doi.org/10.1029/2020JA028138
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of Jupiter’s magnetic field at the completion of Juno’s Prime Mission. Journal of Geophysical Research: Planets, 127(2), e2021JE007055. https://doi.org/10.1029/2021JE007055
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., et al. (2017). Spatial distribution and properties of 0.1–100 keV electrons in Jupiter’s polar auroral region. Geophysical Research Letters, 44(18), 9199–9207. https://doi.org/10.1002/2017GL075106
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., et al. (2019). Comparing electron energetics and UV brightness in Jupiter’s northern polar region during Juno Perijove 5. Geophysical Research Letters, 46(1), 19–27. https://doi.org/10.1029/2018GL081129
Elliott, S. S., Gurnett, D. A., Kurth, W. S., Clark, G., Mauk, B. H., Bolton, S. J., et al. (2018a). Pitch angle scattering of upgoing electron beams in Jupiter’s polar regions by whistler mode waves. Geophysical Research Letters, 45(3), 1246–1252. https://doi.org/10.1002/2017GL076878
Elliott, S. S., Gurnett, D. A., Kurth, W. S., Mauk, B. H., Ebert, R. W., Clark, G., et al. (2018b). The acceleration of electrons to high energies over the Jovian polar cap via whistler mode wave-particle interactions. Journal of Geophysical Research: Space Physics, 123(9), 7523–7533. https://doi.org/10.1029/2018JA025797
Elliott, S. S., Gurnett, D. A., Yoon, P. H., Kurth, W. S., Mauk, B. H., Ebert, R. W., et al. (2020). The generation of upward-Propagating whistler mode waves by electron beams in the Jovian polar regions. Journal of Geophysical Research: Space Physics, 125(6), e2020JA027868. https://doi.org/10.1029/2020JA027868
Gérard, J.-C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124(11), 8298–8317. https://doi.org/10.1029/2019JA026862
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet Spectrograph on NASA’s Juno mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno ultraviolet Spectrograph (Juno-UVS). In UV, X-ray, and gamma-ray Space instrumentation for astronomy XVIII (Vol. 8859, p. 88590T). International Society for Optics and Photonics. https://doi.org/10.1117/12.2024537
Grodent, D., Clarke, J. T., Waite, J. H., Cowley, S. W. H., Gérard, J.-C., & Kim, J. (2003). Jupiter’s polar auroral emissions. Journal of Geophysical Research, 108(A10), 1366. https://doi.org/10.1029/2003JA010017
Gustin, J., Gérard, J. C., Grodent, D., Gladstone, G. R., Clarke, J. T., Pryor, W. R., et al. (2013). Effects of methane on giant planet’s UV emissions and implications for the auroral characteristics. Journal of Molecular Spectroscopy, 291, 108–117. https://doi.org/10.1016/j.jms.2013.03.010
Haewsantati, K., Bonfond, B., Wannawichian, S., Gladstone, G. R., Hue, V., Versteeg, M. H., et al. (2021). Morphology of Jupiter’s polar auroral bright spot emissions via Juno-UVS observations. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028586. https://doi.org/10.1029/2020JA028586
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., et al. (2019). In-flight characterization and calibration of the Juno-ultraviolet Spectrograph (Juno-UVS). The Astronomical Journal, 157(2), 90. https://doi.org/10.3847/1538-3881/aafb36
Jasinski, J. M., Arridge, C. S., Coates, A. J., Jones, G. H., Sergis, N., Thomsen, M. F., et al. (2016). Cassini plasma observations of Saturn’s magnetospheric cusp. Journal of Geophysical Research: Space Physics, 121(12), 12047–12067. https://doi.org/10.1002/2016JA023310
Jasinski, J. M., Arridge, C. S., Lamy, L., Leisner, J. S., Thomsen, M. F., Mitchell, D. G., et al. (2014). Cusp observation at Saturn’s high-latitude magnetosphere by the Cassini spacecraft. Geophysical Research Letters, 41(5), 1382–1388. https://doi.org/10.1002/2014GL059319
Kolmašová, I., Imai, M., Santolík, O., Kurth, W. S., Hospodarsky, G. B., Gurnett, D. A., et al. (2018). Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nature Astronomy, 2(7), 544–548. https://doi.org/10.1038/s41550-018-0442-z
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., et al. (2017). The Juno waves investigation. Space Science Reviews, 213(1), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Kurth, W. S., Mauk, B. H., Elliott, S. S., Gurnett, D. A., Hospodarsky, G. B., Santolik, O., et al. (2018). Whistler mode waves associated with broadband auroral electron precipitation at Jupiter. Geophysical Research Letters, 45(18), 9372–9379. https://doi.org/10.1029/2018GL078566
Kurth, W. S., & Piker, C. W. (2022). Juno E/J/S/SS Waves Calibrated Survey Full Resolution V2.0 [dataset]. NASA Planetary Data System: Planetary Plasma Interactions Node. https://doi.org/10.17189/1520498
Lysak, R. L., Song, Y., Elliott, S., Kurth, W., Sulaiman, A. H., & Gershman, D. (2021). The jovian ionospheric alfvén resonator and auroral particle acceleration. Journal of Geophysical Research: Space Physics, 126(12), e2021JA029886. https://doi.org/10.1029/2021JA029886
Masters, A., Dunn, W. R., Stallard, T. S., Manners, H., & Stawarz, J. (2021). Magnetic reconnection near the planet as a possible driver of Jupiter’s mysterious polar auroras. Journal of Geophysical Research: Space Physics, 126(8), e2021JA029544. https://doi.org/10.1029/2021JA029544
Mauk, B. H. (2022). JEDI calibrated (CDR) data JNO J JED 3 CDR V1.0 [Dataset]. NASA Planetary Data System: Planetary Plasma Interactions Node. https://doi.org/10.17189/1519713
Mauk, B. H., Clark, G., Gladstone, G. R., Kotsiaros, S., Adriani, A., Allegrini, F., et al. (2020). Energetic particles and acceleration regions over Jupiter’s polar cap and main aurora: A broad overview. Journal of Geophysical Research: Space Physics, 125(3), e2019JA027699. https://doi.org/10.1029/2019JA027699
Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E., Cooper, S. A., et al. (2017a). The Jupiter Energetic Particle Detector Instrument (JEDI) investigation for the Juno mission. Space Science Reviews, 213(1), 289–346. https://doi.org/10.1007/s11214-013-0025-3
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017b). Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44(10), 4410–4418. https://doi.org/10.1002/2016GL072286
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2018). Diverse electron and ion acceleration characteristics observed over Jupiter’s main aurora. Geophysical Research Letters, 45(3), 1277–1285. https://doi.org/10.1002/2017GL076901
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1), 547–643. https://doi.org/10.1007/s11214-013-9990-9
Pallier, L., & Prangé, R. (2001). More about the structure of the high latitude Jovian aurorae. Planetary and Space Science, 49(10), 1159–1173. https://doi.org/10.1016/S0032-0633(01)00023-X
Paranicas, C., Mauk, B. H., Haggerty, D. K., Clark, G., Kollmann, P., Rymer, A. M., et al. (2018). Intervals of intense energetic electron beams over Jupiter’s poles. Journal of Geophysical Research: Space Physics, 123(3), 1989–1999. https://doi.org/10.1002/2017JA025106
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., et al. (2017). Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 44(14), 7122–7130. https://doi.org/10.1002/2017GL072837
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020). Alfvénic acceleration sustains Ganymede’s footprint tail aurora. Geophysical Research Letters, 47(3), e2019GL086527. https://doi.org/10.1029/2019GL086527
Trantham, B. (2014). JUNO Jupiter UVS calibrated data archive V1.0 [Dataset]. NASA Planetary Data System: Atmospheres Node. https://doi.org/10.17189/C32J-7R56
Vogt, M., Wilson, R., Provan, G., Kamran, A., James, M., Brennan, M., & Cowley, S. (2022). Con2020 - Current sheet model code. Retrieved from https://github.com/marissav06/con2020
Wilson, R., Vogt, M., Provan, G., Kamran, A., James, M., Brennan, M., & Cowley, S. (2022). PSH: Planetary spherical harmonics community code. Retrieved from https://github.com/rjwilson-LASP/PSH
Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2021). How Jupiter’s unusual magnetospheric topology structures its aurora. Science Advances, 7(15), eabd1204. https://doi.org/10.1126/sciadv.abd1204
Zhu, B., Lindstrom, C., Jun, I., Garrett, H., Kollmann, P., Paranicas, C., et al. (2021). Jupiter high-energy/high-latitude electron environment from juno’s jedi and uvs science instrument background noise. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1002, 165244. https://doi.org/10.1016/j.nima.2021.165244