Space and Planetary Science; Geophysics; Jupiter; Juno; aurora; Io footprint; JIRAM
Abstract :
[en] One of the auroral features of Jupiter is the emission associated with the orbital motion of its moon Io. The relative velocity between Io and the surrounding plasma trigger perturbations that travels as Alfvén waves along the magnetic field lines toward the Jovian ionosphere. These waves can accelerate electrons into the atmosphere and ultimately produce an auroral emission, called the Io footprint. The speed of the Alfvén waves—and hence the position of the footprint—depends on the magnetic field and on the plasma distribution along the field line passing through Io, whose SO2‐rich atmosphere is the source of a dense plasma torus around Jupiter. Since 2016, the Jovian InfraRed Auroral Mapper (JIRAM) onboard Juno has been observing the Io footprint with a spatial resolution of ∼few tens of km/pixel. JIRAM detected evidences of variability in the Io footprint position that are not dependent on the System III longitude of Io. The position of the Io footprint in the JIRAM images is compared with the position predicted by a model of the Io Plasma Torus and of the magnetic field. This is the first attempt to retrieve quantitative information on the variability of the torus by looking at the Io footprint. The results are consistent with previous observations of the density and temperature of the Io Plasma Torus. However, we found that the plasma density and temperature exhibit considerable non‐System III variability that can be due either to local time asymmetry of the torus or to its temporal variability.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Moirano, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy ; Sapienza University of Rome Rome Italy
Mura, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Connerney, J. E. P. ; Space Research Corporation Annapolis MD USA
Dols, V. ; Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hue, V. ; Southwest Research Institute San Antonio TX USA
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Tosi, F. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Migliorini, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Adriani, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Altieri, F. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Castagnoli, C. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy ; Institute of Atmospheric Sciences and Climate National Research Council (CNR ‐ ISAC) Bologna Italy ; University of Rome Tor Vergata Rome Italy
Cicchetti, A. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Dinelli, B. M. ; Institute of Atmospheric Sciences and Climate National Research Council (CNR ‐ ISAC) Bologna Italy
Grassi, D. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Moriconi, M. L. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Noschese, R. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Piccioni, G.; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Plainaki, C. ; Italian Space Agency (ASI) Rome Italy
Scarica, P. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Sindoni, G.; Italian Space Agency (ASI) Rome Italy
Sordini, R. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Turrini, D.; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
Zambon, F. ; Institute for Space Astrophysics and Planetology National Institute for Astrophysics (INAF—IAPS) Rome Italy
ASI - Agenzia Spaziale Italiana Jet Propulsion Laboratory BELSPO - Belgian Federal Science Policy Office NASA - National Aeronautics and Space Administration F.R.S.-FNRS - Fonds de la Recherche Scientifique
Acuña, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfvén wave current system at Io: Voyager 1 observations. Journal of Geophysical Research, 86(A10), 8513–8521. https://doi.org/10.1029/JA086iA10p08513
Adriani, A., Filacchione, G., Di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. (2017). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213(1–4), 393–446. https://doi.org/10.1007/s11214-014-0094-y
Adriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., et al. (2018). Clusters of cyclones encircling Jupiter’s poles. Nature, 555(7695), 216–219. https://doi.org/10.1038/nature25491
Adriani, A., Noschese, R., & Huber, L. (2019). Juno JIRAM bundle. [Dataset]. PDS Atmospheres (ATM). https://doi.org/10.17189/1518967
Bagenal, F. (1994). Empirical model of the Io plasma torus: Voyager measurements. Journal of Geophysical Research, 99(A6), 11043. https://doi.org/10.1029/93JA02908
Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Magnetospheric science objectives of the Juno mission. Space Science Reviews, 213(1–4), 219–287. https://doi.org/10.1007/s11214-014-0036-8
Bagenal, F., Crary, F. J., Stewart, A. I. F., Schneider, N. M., Gurnett, D. A., Kurth, W. S., et al. (1997). Galileo measurements of plasma density in the Io torus. Geophysical Research Letters, 24(17), 2119–2122. https://doi.org/10.1029/97GL01254
Bagenal, F., & Dols, V. (2020). The space environment of Io and Europa. Journal of Geophysical Research: Space Physics, 125(5). https://doi.org/10.1029/2019JA027485
Bagenal, F., & Sullivan, J. D. (1981). Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. Journal of Geophysical Research, 86(A10), 8447–8466. https://doi.org/10.1029/JA086iA10p08447
Barbosa, D. D., & Kivelson, M. G. (1983). Dawn-dusk electric field asymmetry of the Io plasma torus. Geophysical Research Letters, 10(3), 210–213. https://doi.org/10.1029/GL010i003p00210
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuña, M. H. (1981). Plasma observations of the Alfvén wave generated by Io. Journal of Geophysical Research, 86(A10), 8508–8512. https://doi.org/10.1029/JA086iA10p08508
Bertotti, B., Comoretto, G., & Iess, L. (1993). Doppler tracking of spacecraft with multi-frequency links. Astronomy & Astrophysics, 269(1–2), 608–616.
Bhattacharyya, D., Clarke, J. T., Montgomery, J., Bonfond, B., Gérard, J., & Grodent, D. (2018). Evidence for auroral emissions from Callisto’s footprint in HST UV images. Journal of Geophysical Research: Space Physics, 123(1), 364–373. https://doi.org/10.1002/2017JA024791
Bird, M., Asmar, S., Edenhofer, P., Funke, O., Pätzold, M., & Volland, H. (1993). The structure of Jupiter’s Io plasma torus inferred from Ulysses radio occultation observations. Planetary and Space Science, 41(11–12), 999–1010. https://doi.org/10.1016/0032-0633(93)90104-A
Bodisch, K. M., Dougherty, L. P., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 3. Protons and minor ions. Journal of Geophysical Research: Space Physics, 122(8), 8277–8294. https://doi.org/10.1002/2017JA024148
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B. (2012). When moons create aurora: The satellite footprints on giant planets. In Auroral phenomenology and magnetospheric processes: Earth and other planets (pp. 133–140). American Geophysical Union (AGU). https://doi.org/10.1029/2011GM001169
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J. C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217. https://doi.org/10.1016/j.icarus.2017.01.009
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35(5), L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Hess, S., Bagenal, F., Gérard, J.-C., Grodent, D., Radioti, A., et al. (2013). The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 40(19), 4977–4981. https://doi.org/10.1002/grl.50989
Bonfond, B., Hess, S., Gérard, J. C., Grodent, D., Radioti, A., Chantry, V., et al. (2013). Evolution of the Io footprint brightness I: Far-UV observations. Planetary and Space Science, 88, 64–75. https://doi.org/10.1016/j.pss.2013.05.023
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985–7996. https://doi.org/10.1002/2017JA024370
Bonfond, B., Yao, Z. H., Gladstone, G. R., Grodent, D., Gérard, J.-C., Matar, J., et al. (2021). Are dawn storms Jupiter’s auroral substorms? AGU Advances, 2(1), e2020AV000275. https://doi.org/10.1029/2020AV000275
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B., et al. (1979). June). Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science, 204(4396), 979–982. https://doi.org/10.1126/science.204.4396.979
Brown, M. E. (1995). Periodicities in the Io plasma torus. Journal of Geophysical Research, 100(A11), 21683–21695. https://doi.org/10.1029/95JA01988
Brown, M. E., & Bouchez, A. H. (1997). The response of Jupiter’s magnetosphere to an outburst on Io. Science, 278(5336), 268–271. https://doi.org/10.1126/science.278.5336.268
Caldwell, J., Turgeon, B., & Hua, X.-M. (1992). Hubble space telescope imaging of the North polar aurora on Jupiter. Science, 257(5076), 1512–1515. https://doi.org/10.1126/science.257.5076.1512
Chenette, D. L., Conlon, T. F., & Simpson, J. A. (1974). Bursts of relativistic electrons from Jupiter observed in interplanetary space with the time variation of the planetary rotation period. Journal of Geophysical Research (1896-1977), 79(25), 3551–3558. https://doi.org/10.1029/JA079i025p03551
Clark, R. N., & Mc Cord, T. B. (1980). The Galilean satellites: New near-infrared spectral reflectance measurements (0.65–2.5 µm) and a 0.325–5 µm summary. Icarus, 41(3), 323–339. https://doi.org/10.1016/0019-1035(80)90217-1
Clarke, J. T., Ajello, J., Ballester, G., Ben Jaffel, L., Connerney, J., Gérard, J.-C., et al. (2002). Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature, 415(6875), 997–1000. https://doi.org/10.1038/415997a
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., et al. (1996). Far-ultraviolet imaging of Jupiter’s aurora and the Io “footprint”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the lo flux tube in Jupiter’s atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc model for the Juno era. Journal of Geophysical Research: Space Physics, 125(10), e2020JA028138. https://doi.org/10.1029/2020JA028138
Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S., et al. (2022). A new model of Jupiter’s magnetic field at the completion of Juno’s prime mission. Journal of Geophysical Research: Planets, 127(2), e2021JE007055. https://doi.org/10.1029/2021JE007055
Copper, M., Delamere, P. A., & Overcast-Howe, K. (2016). Modeling physical chemistry of the Io plasma torus in two dimensions. Journal of Geophysical Research: Space Physics, 121(7), 6602–6619. https://doi.org/10.1002/2016JA022767
Crary, F. J., Bagenal, F., Ansher, J. A., Gurnett, D. A., & Kurth, W. S. (1996). Anisotropy and proton density in the Io plasma torus derived from whistler wave dispersion. Journal of Geophysical Research, 101(A2), 2699–2706. https://doi.org/10.1029/95JA02212
Crary, F. J., Bagenal, F., Frank, L. A., & Paterson, W. R. (1998). Galileo plasma spectrometer measurements of composition and temperature in the Io plasma torus. Journal of Geophysical Research, 103(A12), 29359–29370. https://doi.org/10.1029/1998JA900003
Damiano, P. A., Delamere, P. A., Stauffer, B., Ng, C.-S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale Alfvén waves in Jupiter’s magnetosphere. Geophysical Research Letters, 46(6), 3043–3051. https://doi.org/10.1029/2018GL081219
Davies, A. G. (2001). Volcanism on Io: The view from Galileo. Astronomy and Geophysics, 42(2), 2.10–2.16. https://doi.org/10.1046/j.1468-4004.2001.42210.x
de Kleer, K., Nimmo, F., & Kite, E. (2019). Variability in Io’s volcanism on timescales of periodic orbital changes. Geophysical Research Letters, 46(12), 6327–6332. https://doi.org/10.1029/2019GL082691
Delamere, P. A., & Bagenal, F. (2003). Modeling variability of plasma conditions in the Io torus. Journal of Geophysical Research, 108(A7), 1276. https://doi.org/10.1029/2002JA009706
Delamere, P. A., Bagenal, F., & Steffl, A. (2005). Radial variations in the Io plasma torus during the Cassini era. Journal of Geophysical Research, 110(A12), A12223. https://doi.org/10.1029/2005JA011251
Delamere, P. A., Steffl, A., & Bagenal, F. (2004). Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. Journal of Geophysical Research, 109(A10), A10216. https://doi.org/10.1029/2003JA010354
de Pater, I., de Kleer, K., Davies, A. G., & Ádámkovics, M. (2017). Three decades of Loki Patera observations. Icarus, 297, 265–281. https://doi.org/10.1016/j.icarus.2017.03.016
Dols, V., Gérard, J. C., Paresce, F., Prangé, R., & Vidal-Madjar, A. (1992). Ultraviolet imaging of the Jovian aurora with the Hubble space telescope. Geophysical Research Letters, 19(18), 1803–1806. https://doi.org/10.1029/92GL02104
Dougherty, L. P., Bodisch, K. M., & Bagenal, F. (2017). Survey of voyager plasma science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space Physics, 122(8), 8257–8276. https://doi.org/10.1002/2017JA024053
Drell, S. D., Foley, H. M., & Ruderman, M. A. (1965). Drag and propulsion of large satellites in the ionosphere; An Alfv∖’en propulsion engine in space. Physical Review Letters, 14(6), 171–175. https://doi.org/10.1103/PhysRevLett.14.171
Drossart, P., Maillard, J., Caldwell, J., Kim, S., Watson, J., Majewski, W., et al. (1989). Detection of H3+ on Jupiter. Nature, 340(6234), 539–541. https://doi.org/10.1038/340539a0
Dunn, W. R., Gray, R., Wibisono, A. D., Lamy, L., Louis, C., Badman, S. V., et al. (2020). Comparisons between Jupiter’s X-ray, UV and radio emissions and in-situ solar wind measurements during 2007. Journal of Geophysical Research: Space Physics, 125(6), e2019JA027222. https://doi.org/10.1029/2019JA027222
Gérard, J.-C., Mura, A., Bonfond, B., Gladstone, G., Adriani, A., Hue, V., et al. (2018). Concurrent ultraviolet and infrared observations of the North Jovian aurora during Juno’s first Perijove. Icarus, 312, 145–156. https://doi.org/10.1016/j.icarus.2018.04.020
Gérard, J.-C., Saglam, A., Grodent, D., & Clarke, J. T. (2006). Morphology of the ultraviolet Io footprint emission and its control by Io’s location. Journal of Geophysical Research, 111(A4), A04202. https://doi.org/10.1029/2005JA011327
Gladstone, G. R., Stern, S. A., Slater, D. C., Versteeg, M., Davis, M. W., Retherford, K. D., et al. (2007). Jupiter’s nightside airglow and aurora. Science, 318(5848), 229–231. https://doi.org/10.1126/science.1147613
Gladstone, G. R., Waite, J. H., Grodent, D., Lewis, W. S., Crary, F. J., Elsner, R. F., et al. (2002). A pulsating auroral X-ray hot spot on Jupiter. Nature, 415(6875), 1000–1003. https://doi.org/10.1038/4151000a
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Gérard, J.-C., Gustin, J., Mauk, B. H., Connerney, J. E. P., & Clarke, J. T. (2006). Europa’s FUV auroral tail on Jupiter. Geophysical Research Letters, 33(6), L06201. https://doi.org/10.1029/2005GL025487
Grodent, D., Waite, J. H., Jr., & Gérard, J.-C. (2001). A self-consistent model of the Jovian auroral thermal structure. Journal of Geophysical Research, 106(A7), 12933–12952. https://doi.org/10.1029/2000JA900129
Herbert, F., Schneider, N. M., & Dessler, A. J. (2008). New description of Io’s cold plasma torus. Journal of Geophysical Research, 113(A1). https://doi.org/10.1029/2007JA012555
Hess, S. L. G., Bonfond, B., Chantry, V., Gérard, J. C., Grodent, D., Jacobsen, S., & Radioti, A. (2013). Evolution of the Io footprint brightness II: Modeling. Planetary and Space Science, 88, 76–85. https://doi.org/10.1016/j.pss.2013.08.005
Hess, S. L. G., Delamere, P., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115(A6). https://doi.org/10.1029/2009JA014928
Hess, S. L. G., Delamere, P. A., Bagenal, F., Schneider, N., & Steffl, A. J. (2011). Longitudinal modulation of hot electrons in the Io plasma torus. Journal of Geophysical Research, 116(A11). https://doi.org/10.1029/2011JA016918
Hikida, R., Yoshioka, K., Tsuchiya, F., Kagitani, M., Kimura, T., Bagenal, F., et al. (2020). Spatially asymmetric increase in hot electron fraction in the Io plasma torus during volcanically active period revealed by observations by Hisaki/EXCEED from November 2014 to May 2015. Journal of Geophysical Research: Space Physics, 125(3), e2019JA027100. https://doi.org/10.1029/2019JA027100
Hill, T. W., Dessler, A. J., & Michel, F. C. (1974). Configuration of the Jovian magnetosphere. Geophysical Research Letters, 1(1), 3–6. https://doi.org/10.1029/GL001i001p00003
Hinton, P. C., Bagenal, F., & Bonfond, B. (2019). Alfvén wave propagation in the Io plasma torus. Geophysical Research Letters, 46(3), 1242–1249. https://doi.org/10.1029/2018GL081472
Huscher, E., Bagenal, F., Wilson, R. J., Allegrini, F., Ebert, R. W., Valek, P. W., et al. (2021). Survey of Juno observations in Jupiter’s plasma disk: Density. Journal of Geophysical Research: Space Physics, 126(8), e2021JA029446. https://doi.org/10.1029/2021JA029446
Ingersoll, A. P., Vasavada, A. R., Little, B., Anger, C. D., Bolton, S. J., Alexander, C., et al. (1998). Imaging Jupiter’s aurora at visible wavelengths. Icarus, 135(1), 251–264. https://doi.org/10.1006/icar.1998.5971
Ip, W.-H., & Goertz, C. K. (1983). An interpretation of the dawn–dusk asymmetry of UV emission from the Io plasma torus. Nature, 302(5905), 232–233. https://doi.org/10.1038/302232a0
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io’s nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophysical Research Letters, 34(10), L10202. https://doi.org/10.1029/2006GL029187
Jacobsen, S., Saur, J., Neubauer, F. M., Bonfond, B., Gérard, J.-C., & Grodent, D. (2010). Location and spatial shape of electron beams in Io’s wake. Journal of Geophysical Research, 115(A4). https://doi.org/10.1029/2009JA014753
Jones, S. T., & Su, Y.-J. (2008). Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. Journal of Geophysical Research, 113(A12). https://doi.org/10.1029/2008JA013512
Jørgensen, J. L., Denver, T., Benn, M., Jørgensen, P. S., Herceg, M., Merayo, J. M. G., & Connerney, J. E. P. (2020). A profile of the Io dust cloud and plasma torus as observed from Juno (Technical report no. EGU2020-18093). Copernicus meetings. https://doi.org/10.5194/egusphere-egu2020-18093
Kaiser, M. L., & Desch, M. D. (1980). Narrow-band Jovian kilometric radiation: A new radio component. Geophysical Research Letters, 7(5), 389–392. https://doi.org/10.1029/GL007i005p00389
Kennel, C. F., & Coroniti, F. V. (1977). Possible origins of time variability in Jupiter’s outer magnetosphere, 2. Variations in solar wind magnetic field. Geophysical Research Letters, 4(6), 215–218. https://doi.org/10.1029/GL004i006p00215
Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., & Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal (Ed.), Jupiter: The planet, satellites and magnetosphere (Vol. 21, p. 513). Cambridge University Press.
Koga, R., Tsuchiya, F., Kagitani, M., Sakanoi, T., Yoshioka, K., Yoshikawa, I., et al. (2019). Transient change of Io’s neutral oxygen cloud and plasma torus observed by Hisaki. Journal of Geophysical Research: Space Physics, 124(12), 10318–10331. https://doi.org/10.1029/2019JA026877
Kupo, I., Mekler, Y., & Eviatar, A. (1976). Detection of ionized sulfur in the Jovian magnetosphere. Astrophysical Journal, 205, L51. https://doi.org/10.1086/182088
Kurth, W. S., Imai, M., Hospodarsky, G. B., Gurnett, D. A., Louarn, P., Valek, P., et al. (2017). A new view of Jupiter’s auroral radio spectrum. Geophysical Research Letters, 44(14), 7114–7121. https://doi.org/10.1002/2017GL072889
Lichtenberg, G., Thomas, N., & Fouchet, T. (2001). Detection of S (IV) 10.51 µm emission from the Io plasma torus. Journal of Geophysical Research, 106(A12), 29899–29910. https://doi.org/10.1029/2001JA900020
Livengood, T. A., Moos, H. W., Ballester, G. E., & Prangé, R. M. (1992). Jovian ultraviolet auroral activity, 1981–1991. Icarus, 97(1), 26–45. https://doi.org/10.1016/0019-1035(92)90055-C
Lopes, R. M., & Williams, D. A. (2015). Volcanism on Io. In The encyclopedia of volcanoes (pp. 747–762). Elsevier. https://doi.org/10.1016/B978-0-12-385938-9.00043-2
Louarn, P., Paranicas, C. P., & Kurth, W. S. (2014). Global magnetodisk disturbances and energetic particle injections at Jupiter. Journal of Geophysical Research: Space Physics, 119(6), 4495–4511. https://doi.org/10.1002/2014JA019846
Lysak, R. L., & Song, Y. (2003). Kinetic theory of the Alfvén wave acceleration of auroral electrons. Journal of Geophysical Research, 108(A4), 8005. https://doi.org/10.1029/2002JA009406
Lysak, R. L., Song, Y., Elliott, S., Kurth, W., Sulaiman, A. H., & Gershman, D. (2021). The Jovian ionospheric Alfvén resonator and auroral particle acceleration. Journal of Geophysical Research: Space Physics, 126(12), e2021JA029886. https://doi.org/10.1029/2021JA029886
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., et al. (2017). The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1), 547–643. https://doi.org/10.1007/s11214-013-9990-9
McDoniel, W. J., Goldstein, D. B., Varghese, P. L., & Trafton, L. M. (2019). Simulation of Io’s plumes and Jupiter’s plasma torus. Physics of Fluids, 31(7), 077103. https://doi.org/10.1063/1.5097961
Mei, Y., Thorne, R. M., & Bagenal, F. (1995). Analytical model for the density distribution in the Io plasma torus. Journal of Geophysical Research, 100(A2), 1823–1828. https://doi.org/10.1029/94JA02359
Miller, S., Tennyson, J., Geballe, T. R., & Stallard, T. (2020). Thirty years of H3+ astronomy. Reviews of Modern Physics, 92(3), 035003. https://doi.org/10.1103/RevModPhys.92.035003
Moirano, A. (2023). Variability of the auroral footprint of Io detected by Juno-JIRAM and modelling of the Io plasma torus. [Dataset]. Zenodo. https://doi.org/10.5281/zenodo.7496835
Moirano, A., Gomez Casajus, L., Zannoni, M., Durante, D., & Tortora, P. (2021). Morphology of the Io plasma torus from Juno radio occultations. Journal of Geophysical Research: Space Physics, 126(10), e2021JA029190. https://doi.org/10.1029/2021JA029190
Moirano, A., Mura, A., Adriani, A., Dols, V., Bonfond, B., Waite, J. H., et al. (2021). Morphology of the auroral tail of Io, Europa, and Ganymede from JIRAM L-band imager. Journal of Geophysical Research: Space Physics, 126(9), e2021JA029450. https://doi.org/10.1029/2021JA029450
Morgan, J. S. (1985). Temporal and spatial variations in the Io torus. Icarus, 62(3), 389–414. https://doi.org/10.1016/0019-1035(85)90183-6
Morgenthaler, J. P., Schmidt, C., Marconi, M., Vogt, M., & Schneider, N. (2022a). Using Io Input/Output observatory (IoIO) observations to determine if mass flow in Jupiter’s magnetosphere driven by internal or external processes. Paper presented at Magnetosphere of the Outer Planets Meeting 2022, Liege, Belgium.
Morgenthaler, J. P., Schmidt, C., Marconi, M., Vogt, M. F., & Schneider, N. M. (2022b). Find your favorite Io volcanic enhancement! A global view of the Jovian magnetosphere during the Juno mission as recorded by PSI’s Io input/output observatory (IoIO). AGU Fall Meeting 2022.
Mura, A., Adriani, A., Altieri, F., Connerney, J. E. P., Bolton, S. J., Moriconi, M. L., et al. (2017). Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints: Jovian Aurora IR Observations from Juno. Geophysical Research Letters, 44(11), 5308–5316. https://doi.org/10.1002/2017GL072954
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., et al. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. https://doi.org/10.1126/science.aat1450
Murakami, G., Yoshioka, K., Yamazaki, A., Tsuchiya, F., Kimura, T., Tao, C., et al. (2016). Response of Jupiter’s inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus. Geophysical Research Letters, 43(24), 12308–12316. https://doi.org/10.1002/2016GL071675
Nerney, E. G., & Bagenal, F. (2020). Combining UV spectra and physical chemistry to constrain the hot electron fraction in the Io plasma torus. Journal of Geophysical Research: Space Physics, 125(4), e2019JA027458. https://doi.org/10.1029/2019JA027458
Neubauer, F. (1980). Nonlinear standing Alfvén wave current system at Io: Theory. Journal of Geophysical Research, 85(A3), 1171–1178. https://doi.org/10.1029/JA085iA03p01171
Nichols, J. D., Allegrini, F., Bagenal, F., Bunce, E. J., Cowley, S. W. H., Ebert, R. W., et al. (2020). An enhancement of Jupiter’s main auroral emission and magnetospheric currents. Journal of Geophysical Research: Space Physics, 125(8), e2020JA027904. https://doi.org/10.1029/2020JA027904
Oka, T. (1980). Observation of the infrared spectrum of H3+. Physical Review Letters, 45(7), 531–534. https://doi.org/10.1103/PhysRevLett.45.531
Phipps, P. H., Withers, P., Buccino, D. R., Yang, Y.-M., & Parisi, M. (2021). Two years of observations of the Io plasma torus by Juno radio occultations: Results from perijoves 1 to 15. Journal of Geophysical Research: Space Physics, 126(3), e2020JA028710. https://doi.org/10.1029/2020JA028710
Phipps, P. H., Withers, P., Vogt, M. F., Buccino, D. R., Yang, Y., Parisi, M., et al. (2020). Where is the Io plasma torus? A comparison of observations by Juno radio occultations to predictions from Jovian magnetic field models. Journal of Geophysical Research: Space Physics, 125(8). https://doi.org/10.1029/2019JA027633
Prangé, R., Rego, D., Southwood, D., Zarka, P., Miller, S., & Ip, W. (1996). Rapid energy dissipation and variability of the lo–Jupiter electrodynamic circuit. Nature, 379(6563), 323–325. https://doi.org/10.1038/379323a0
Roesler, F. L., Scherb, F., & Oliversen, R. J. (1984). Periodic intensity variation in [SIII] 9531A emission from the Jupiter plasma torus. Geophysical Research Letters, 11(2), 128–130. https://doi.org/10.1029/GL011i002p00128
Roth, L., Boissier, J., Moullet, A., Sánchez-Monge, A., de Kleer, K., Yoneda, M., et al. (2020). An attempt to detect transient changes in Io’s SO2 and NaCl atmosphere. Icarus, 350, 113925. https://doi.org/10.1016/j.icarus.2020.113925
Sandel, B. R., & Broadfoot, A. L. (1982a). Discovery of an Io-correlated energy source for Io’s hot plasma torus. Journal of Geophysical Research, 87(A4), 2231–2240. https://doi.org/10.1029/JA087iA04p02231
Sandel, B. R., & Broadfoot, A. L. (1982b). Io’s hot plasma torus—A synoptic view from Voyager. Journal of Geophysical Research, 87(A1), 212–218. https://doi.org/10.1029/JA087iA01p00212
Sandel, B. R., & Dessler, A. J. (1988). Dual periodicity of the Jovian magnetosphere. Journal of Geophysical Research, 93(A6), 5487–5504. https://doi.org/10.1029/JA093iA06p05487
Sandel, B. R., Shemansky, D. E., Broadfoot, A. L., Bertaux, J. L., Blamont, J. E., Belton, M. J. S., et al. (1979). Extreme ultraviolet observations from Voyager 2 encounter with Jupiter. Science, 206(4421), 962–966. https://doi.org/10.1126/science.206.4421.962
Saur, J. (2004). A model of Io’s local electric field for a combined Alfvénic and unipolar inductor far-field coupling. Journal of Geophysical Research, 109(A1), A01210. https://doi.org/10.1029/2002JA009354
Schlegel, S., & Saur, J. (2022). Alternating emission features in Io’s footprint tail: Magnetohydrodynamical simulations of possible causes. Journal of Geophysical Research: Space Physics, 127(5), e2021JA030243. https://doi.org/10.1029/2021JA030243
Schmidt, C., Schneider, N., Leblanc, F., Gray, C., Morgenthaler, J., Turner, J., & Grava, C. (2018). A survey of visible S+ emission in Io’s plasma torus during the Hisaki epoch. Journal of Geophysical Research: Space Physics, 123(7), 5610–5624. https://doi.org/10.1029/2018JA025296
Schneider, N. M., & Trauger, J. T. (1995). The structure of the Io torus. Astrophysical Journal, 450, 450. https://doi.org/10.1086/176155
Skinner, T. E., Durrance, S. T., Feldman, P. D., & Moos, H. W. (1984). IUE observations of longitudinal and temporal variations in the Jovian auroral emission. The Astrophysical Journal, 278, 441–448. https://doi.org/10.1086/161809
Smyth, W. H., Peterson, C. A., & Marconi, M. L. (2011). A consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 ground-based, and Galileo J0 epochs. Journal of Geophysical Research, 116(A7). https://doi.org/10.1029/2010JA016094
Steffl, A., Delamere, P., & Bagenal, F. (2006). Cassini UVIS observations of the Io plasma torus III. Observations of temporal and azimuthal variability. Icarus, 180(1), 124–140. https://doi.org/10.1016/j.icarus.2005.07.013
Steffl, A., Delamere, P., & Bagenal, F. (2008). Cassini UVIS observations of the Io plasma torus. Icarus, 194(1), 153–165. https://doi.org/10.1016/j.icarus.2007.09.019
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al. (2020). Wave-particle interactions associated with Io’s auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes. Geophysical Research Letters, 47(22). https://doi.org/10.1029/2020GL088432
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020). A new framework to explain changes in Io’s footprint tail electron fluxes. Geophysical Research Letters, 47(18). https://doi.org/10.1029/2020GL089267
Tao, C., Badman, S. V., & Fujimoto, M. (2011). UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison. Icarus, 213(2), 581–592. https://doi.org/10.1016/j.icarus.2011.04.001
Thomas, N. (1992). Optical observations of Io’s neutral clouds and plasma torus. Surveys in Geophysics, 13(2), 91–164. https://doi.org/10.1007/BF01903525
Thomas, N. (1995). Ion temperatures in the Io plasma torus. Journal of Geophysical Research, 100(A5), 7925–7935. https://doi.org/10.1029/94JA03143
Thomas, N., Bagenal, F., Hill, T. W., & Wilson, J. K. (2004). The Io neutral clouds and plasma torus. In F. Bagenal, T. E. Dowling, & W. B. McKinnon (Eds.), Jupiter. The planet, satellites and magnetosphere (Vol. 1, pp. 561–591).
Thomas, N., & Lichtenberg, G. (1997). The latitudinal dependence of ion temperature in the Io plasma torus. Geophysical Research Letters, 24(10), 1175–1178. https://doi.org/10.1029/97GL01133
Trafton, L., Carr, J., Lester, D., & Harvey, P. (1989). Jupiter’s aurora: Detection of quadrupole h2 emission (p. 494). NASA Special Publication.
Tsuchiya, F., Arakawa, R., Misawa, H., Kagitani, M., Koga, R., Suzuki, F., et al. (2019). Azimuthal variation in the Io plasma torus observed by the Hisaki satellite from 2013 to 2016. Journal of Geophysical Research: Space Physics, 124(5), 3236–3254. https://doi.org/10.1029/2018JA026038
Tsuchiya, F., Yoshioka, K., Kimura, T., Koga, R., Murakami, G., Yamazaki, A., et al. (2018). Enhancement of the Jovian magnetospheric plasma Circulation caused by the change in plasma supply from the satellite Io. Journal of Geophysical Research: Space Physics, 123(8), 6514–6532. https://doi.org/10.1029/2018JA025316
Vasavada, A. R., Bouchez, A. H., Ingersoll, A. P., Little, B., & Anger, C. D. (1999). Jupiter’s visible aurora and Io footprint. Journal of Geophysical Research, 104(E11), 27133–27142. https://doi.org/10.1029/1999JE001055
Vogt, M. F., Connerney, J. E., DiBraccio, G. A., Wilson, R. J., Thomsen, M. F., Ebert, R. W., et al. (2020). Magnetotail reconnection at Jupiter: A survey of Juno magnetic field observations. Journal of Geophysical Research: Space Physics, 125(3), e2019JA027486. https://doi.org/10.1029/2019JA027486
Wu, W., Peng, S., Ma, T., Ren, H., Zhang, J., Zhang, T., et al. (2019). Status of high current H2+ and H3+ ion sources. Review of Scientific Instruments, 90(10), 101501. https://doi.org/10.1063/1.5109240
Yao, Z. H., Bonfond, B., Grodent, D., Chané, E., Dunn, W. R., Kurth, W. S., et al. (2022). On the relation between auroral morphologies and compression conditions of Jupiter’s magnetopause: Observations from Juno and the Hubble space telescope. Journal of Geophysical Research: Space Physics, 127(10), e2021JA029894. https://doi.org/10.1029/2021JA029894
Yao, Z. H., Dunn, W. R., Woodfield, E. E., Clark, G., Mauk, B. H., Ebert, R. W., et al. (2021). Revealing the source of Jupiter’s x-ray auroral flares. Science Advances, 7(28), eabf0851. https://doi.org/10.1126/sciadv.abf0851
Yoneda, M., Nozawa, H., Misawa, H., Kagitani, M., & Okano, S. (2010). Jupiter’s magnetospheric change by Io’s volcanoes. Geophysical Research Letters, 37(11). https://doi.org/10.1029/2010GL043656
Yoneda, M., Tsuchiya, F., Misawa, H., Bonfond, B., Tao, C., Kagitani, M., & Okano, S. (2013). Io’s volcanism controls Jupiter’s radio emissions. Geophysical Research Letters, 40(4), 671–675. https://doi.org/10.1002/grl.50095
Yoshioka, K., Tsuchiya, F., Kagitani, M., Kimura, T., Murakami, G., Fukuyama, D., et al. (2018). The influence of Io’s 2015 volcanic activity on Jupiter’s magnetospheric dynamics. Geophysical Research Letters, 45(19), 10193–10199. https://doi.org/10.1029/2018GL079264
Zarka, P. (1998). Auroral radio emissions at the outer planets: Observations and theories. Journal of Geophysical Research, 103(E9), 20159–20194. https://doi.org/10.1029/98JE01323
Zieger, B., & Hansen, K. C. (2008). Statistical validation of a solar wind propagation model from 1 to 10 AU. Journal of Geophysical Research, 113(A8). https://doi.org/10.1029/2008JA013046