[en] Temperate Earth-sized exoplanets around late-M dwarfs offer a rare opportunity to explore under which conditions planets can develop hospitable climate conditions. The small stellar radius amplifies the atmospheric transit signature, making even compact secondary atmospheres dominated by N2 or CO2 amenable to characterization with existing instrumentation. Yet, despite large planet search efforts, detection of low-temperature Earth-sized planets around late-M dwarfs has remained rare and the TRAPPIST-1 system, a resonance chain of rocky planets with seemingly identical compositions, has not yet shown any evidence of volatiles in the system. Here we report the discovery of a temperate Earth-sized planet orbiting the cool M6 dwarf LP 791-18. The newly discovered planet, LP 791-18d, has a radius of 1.03 ± 0.04 R⊕ and an equilibrium temperature of 300-400 K, with the permanent night side plausibly allowing for water condensation. LP 791-18d is part of a coplanar system and provides a so-far unique opportunity to investigate a temperate exo-Earth in a system with a sub-Neptune that retained its gas or volatile envelope. On the basis of observations of transit timing variations, we find a mass of 7.1 ± 0.7 M⊕ for the sub-Neptune LP 791-18c and a mass of 0.9<SUB>−0.4</SUB><SUP>+0.5 M⊕ for the exo-Earth LP 791-18d. The interaction with the sub-Neptune prevents the complete circularization of LP 791-18d's orbit, result in gravitational g in continued tidal heating of LP 791-18d's interior and probably strong volcanic activity at the surface.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Peterson, Merrin S.; University of Montreal, Department of Physics
Benneke, Björn; University of Montreal, Department of Physics
Collins, Karen; Harvard Smithsonian Center for Astrophysics
Piaulet, Caroline; University of Montreal, Department of Physics
Crossfield, Ian J. M.; University of Kansas, Department of Physics and Astronomy
Ali-Dib, Mohamad; University of Montreal, Department of Physics, New York University, Abu Dhabi
Christiansen, Jessie L.; Infrared Processing and Analysis Center
Gagné, Jonathan; Planetarium of Rio Tinto Alcan and Institute for Research on Exoplanets, University of Montréal, Montreal, Quebec, Canada
Faherty, Jackie; American Museum for National History, New York, NY, USA
Kite, Edwin; Department of the Geological Sciences, University of Chicago, Chicago, IL, USA
Dressing, Courtney; University of California, Berkeley, Department of Astronomy
Charbonneau, David; Harvard Smithsonian Center for Astrophysics
Murgas, Felipe; Astrophysical Institute of the Canaries
Cointepas, Marion; Institute de Planetologie et d'Astrophysique de Grenoble
Almenara, Jose Manuel; Institute de Planetologie et d'Astrophysique de Grenoble
Bonfils, Xavier; Institute de Planetologie et d'Astrophysique de Grenoble
Kane, Stephen; University of California, Irvine, Department of Earth System Science
Werner, Michael W.; Jet Propulsion Laboratory
Gorjian, Varoujan; Jet Propulsion Laboratory
Roy, Pierre-Alexis; University of Montreal, Department of Physics
Shporer, Avi; MIT, Center for Space Research/Kavli Institute
Pozuelos, Francisco J.; Institute of Astrophysics of Andalucía (IAA-CSIC), Glorieta de la Astronomía s, Granada, Spain, Astrobiology Research Unit, University of Liège, Liège, Belgium
Socia, Quentin Jay; University of Arizona, Department of Astronomy and Steward Observatory
Cloutier, Ryan; Harvard Smithsonian Center for Astrophysics, McMaster University, Department of Physics and Astronomy
Dietrich, Jeremy; University of Arizona, Department of Astronomy and Steward Observatory
Irwin, Jonathan; Harvard Smithsonian Center for Astrophysics
Weiss, Lauren; University of Hawaii, Manoa
Waalkes, William; University of Colorado, Boulder, Department of Astrophysical and Planetary Sciences
Berta-Thomson, Zach; University of Colorado, Boulder, Department of Astrophysical and Planetary Sciences
Evans, Thomas; MIT, Center for Space Research/Kavli Institute
Apai, Daniel; University of Arizona, Department of Astronomy and Steward Observatory, University of Arizona, Department of Planetary Sciences
Parviainen, Hannu; Astrophysical Institute of the Canaries
Pallé, Enric; Astrophysical Institute of the Canaries
Narita, Norio; Astrophysical Institute of the Canaries, -, -
Howard, Andrew W.; California Institute of Technology, Division of Physics, Mathematics and Astronomy
Dragomir, Diana; University of New Mexico, Department of Physics and Astronomy
Barkaoui, Khalid ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Exoplanets in Transit: Identification and Characterization
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Jehin, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Ducrot, Elsa ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Exoplanets in Transit: Identification and Characterization
Benkhaldoun, Zouhair; University Cadi Ayyad, Morocco
Fukui, Akihiko; Astrophysical Institute of the Canaries, -
Mori, Mayuko; Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo, Bunkyoku, Tokyo, Japan
Nishiumi, Taku; Astrobiology Center, Osawa, Mitaka, Tokyo, Japan, Department of Astronomical Science, The Graduated University for Advanced Studies, Sokendai, Osawa, Mitaka, Tokyo, Japan, Department of Multi-Disciplinary Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, Japan
Kawauchi, Kiyoe; Astrophysical Institute of the Canaries, -
Ricker, George; MIT, Center for Space Research/Kavli Institute
Latham, David W.; Harvard Smithsonian Center for Astrophysics
Winn, Joshua N.; Princeton University, Department of Astrophysical Sciences
Seager, Sara; MIT, Center for Space Research/Kavli Institute, MIT, Department of Earth and Planetary Science, MIT, Department of Earth and Planetary Science
Isaacson, Howard; University of California, Berkeley, Department of Astronomy
Bixel, Alex; University of Arizona, Department of Astronomy and Steward Observatory
Gibbs, Aidan; University of California, Los Angeles, Department of Physics and Astronomy
Jenkins, Jon M.; NASA Ames Research Center
Smith, Jeffrey C.; SETI Institute, California
Chavez, Jose Perez; Texas State University, Department of Physics, San Marcos, TX, USA
Rackham, Benjamin V.; MIT, Center for Space Research/Kavli Institute
Henning, Thomas; Max-Planck-Institute for Astronomy, Heidelberg
Gabor, Paul; Vatican Observatory
Chen, Wen-Ping; National Central University, Taiwan, Institute of Astronomy
Espinoza, Nestor; Space Telescope Science Institute, Baltimore, Maryland
Jensen, Eric L. N.; Swarthmore College, Department of Physics and Astronomy
Collins, Kevin I.; George Mason University, Virginia
Schwarz, Richard P.; Harvard Smithsonian Center for Astrophysics
Conti, Dennis M.; American Association of Variable Star Observers, Massachusetts
Wang, Gavin; Tsinghua International School, Beijing, China
Kielkopf, John F.; University of Louisville
Mao, Shude; CAS, National Astronomical Observatories
Gillon, M. et al. The TRAPPIST-1 JWST Community Initiative. Bull. AAS 10.3847/25c2cfeb.afbf0205 (2020).
Gillon, M. Searching for red worlds. Nat. Astron. 2, 344–344 (2018).
Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. J. 2, 1 (2021).
Crossfield, I. J. M. et al. A super-Earth and sub-Neptune transiting the late-type M dwarf LP 791-18. Astrophys. J. 883, L16 (2019).
Spencer, J. R. et al. Io’s thermal emission from the Galileo photopolarimeter-radiometer. Science 288, 1198–1201 (2000).
Veeder, G. J., Matson, D. L., Johnson, T. V., Davies, A. G. & Blaney, D. L. The polar contribution to the heat flow of Io. Icarus 169, 264–270 (2004).
Deck, K. M., Agol, E., Holman, M. J. & Nesvorný, D. TTVFast: an efficient and accurate code for transit timing inversion problems. Astrophys. J. 787, 132 (2014).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. Emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).
Aguichine, A., Mousis, O., Deleuil, M. & Marcq, E. Mass–radius relationships for irradiated ocean planets. Astrophys. J. 914, 84 (2021).
Fulton, B. J. & Petigura, E. A. The California-Kepler survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the planet radius gap. Astron. J 156, 264 (2018).
Cloutier, R. & Menou, K. Evolution of the radius valley around low-mass stars from Kepler and K2. Astron. J 159, 211 (2020).
Lee, E. J. & Connors, N. J. Primordial radius gap and potentially broad core mass distributions of super-earths and sub-Neptunes. Astrophys. J. 908, 32 (2021).
Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).
Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).
Owen, J. E. & Campos Estrada, B. Testing exoplanet evaporation with multitransiting systems. Mon. Not. R. Astron.Soc. 491, 5287–5297 (2020).
Cloutier, R. et al. A pair of TESS planets spanning the radius valley around the nearby mid-M dwarf LTT 3780. Astron. J. 160, 3 (2020).
Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. 909, L22 (2021).
Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of water in terrestrial magma oceans and carbon-rich early atmospheres. Planet. Sci. J. 3, 93 (2022).
Kopparapu, R. K. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 2981–2993 (Springer International Publishing, 2018).
Turbet, M. et al. Day–night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021).
Leconte, J. et al. 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron. Astrophys. 554, A69 (2013).
Wordsworth, R. D. Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016).
Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).
Veeder, G. J. et al. Io: volcanic thermal sources and global heat flow. Icarus 219, 701–722 (2012).
Kempton, E. M.-R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).
Deming, D. et al. Discovery and characterization of transiting super earths using an all-sky transit survey and follow-up by the James Webb Space Telescope. Publ. Astron. Soc. Pac. 121, 952–967 (2009).
Greene, T. P. et al. Characterizing transiting exoplanet atmospheres with JWST. ApJ 817, 17 (2016).
Matsuo, T. et al. Photometric precision of a Si:As impurity band conduction mid-infrared detector and application to transit spectroscopy. Publ. Astron. Soc. Pac. 131, 124502 (2019).
Benneke, B. et al. Water vapor and clouds on the habitable-zone sub-Neptune exoplanet K2-18b. Astrophys. J. Lett. 887, L14 (2019).
Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).
Filippazzo, J. C. et al. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime. Astrophys. J. 810, 158 (2015).
Demory, B.-O. et al. Mass-radius relation of low and very low-mass stars revisited with the VLTI. Astron. Astrophys. 505, 205–215 (2009).
Brown, T. M. et al. Las Cumbres observatory global telescope network. Publ. Astron. Soc. Pac. 125, 1031 (2013).
Nutzman, P. & Charbonneau, D. Design considerations for a ground-based transit search for habitable planets orbiting m dwarfs. Publ. Astron. Soc. Pac. 120, 317–327 (2008).
Gillon, M. et al. The TRAPPIST survey of southern transiting planets—I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012).
Bonfils, X. et al. in Techniques and Instrumentation for Detection of Exoplanets VII Vol. 9605 96051L (International Society for Optics; Photonics, 2015).
Narita, N. et al. MuSCAT: a multicolor simultaneous camera for studying atmospheres of transiting exoplanets. J. Astron. Telesc. Instrum. Syst. 1, 045001 (2015).
Narita, N. et al. MuSCAT2: four-color simultaneous camera for the 1.52-m Telescopio Carlos Sánchez. J. Astron. Telesc. Instrum. Syst. 5, 015001 (2018).
Murray, C. A. et al. Photometry and performance of SPECULOOS-South. Mon. Not. R. Astron. Soc. 495, 2446–2457 (2020).
Gibbs, A. et al. EDEN: sensitivity analysis and transiting planet detection limits for nearby late red dwarfs. Astrophys. J. 159, 169 (2020).
Benneke, B. et al. Spitzer observations confirm and rescue the habitable-zone super-earth K2-18b for future characterization. Astrophys. J. 834, 187 (2017).
Deming, D. et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. Astrophys. J. 805, 132 (2015).
Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).
Kreidberg, L. Batman: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161 (2015).
Stumpe, M. C. et al. Kepler presearch data conditioning I—architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pac. 124, 985 (2012).
Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).
Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pac. 126, 100–114 (2014).
Jenkins, J. M. et al. in Software and Cyberinfrastructure for Astronomy IV Vol. 9913 (eds Chiozzi, G. & Guzman, J. C.) 1232–1251 (International Society for Optics; Photonics; SPIE, 2016).
Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. ASTROIMAGEJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).
Parviainen, H. & Aigrain, S. Ldtk: limb darkening toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).
Espinoza, N., Kossakowski, D. & Brahm, R. Juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems. Mon. Not. R. Astron. Soc. 490, 2262–2283 (2019).
Gillon, M. et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012).
Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).
Eastman, J., Gaudi, B. S. & Agol, E. EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pac. 125, 83–112 (2013).
Lithwick, Y., Xie, J. & Wu, Y. Extracting planet mass and eccentricity from TTV data. Astrophys. J. 761, 122 (2012).
Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).
Rein, H. & Tamayo, D. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015).
Jontof-Hutter, D. et al. Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M ⊕ with diverse densities and incident fluxes. Astrophys. J. 820, 39 (2016).
Tamayo, D., Rein, H., Shi, P. & Hernandez, D. M. REBOUNDx: a library for adding conservative and dissipative forces to otherwise symplectic N-body integrations. Mon. Not. R. Astron. Soc. 491, 2885–2901 (2020).
Clausen, N. & Tilgner, A. Dissipation in rocky planets for strong tidal forcing. Astron. Astrophys. 584, A60 (2015).
Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 2000).
Piaulet, C. et al. WASP-107b’s density is even lower: a case study for the physics of planetary gas envelope accretion and orbital migration. Astron. J 161, 70 (2021).
Tian, F. Atmospheric escape from solar system terrestrial planets and exoplanets. Ann. Rev. Earth Planetary Sci. 43, 459–476 (2015).
Liang, M.-C., Parkinson, C. D., Lee, A. Y.-T., Yung, Y. L. & Seager, S. Source of atomic hydrogen in the atmosphere of HD 209458b. Astrophys. J. Lett. 596, L247–L250 (2003).
Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C. & Hébrard, G. Atmospheric escape from hot Jupiters. Astron. Astrophys. 418, L1–L4 (2004).
Tian, F., Toon, O. B., Pavlov, A. A. & De Sterck, H. Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621, 1049–1060 (2005).
Feinstein, A. D. et al. Flare statistics for young stars from a convolutional neural network analysis of TESS data. Astron. J 160, 219 (2020).
Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nat. Astron. 10.1038/s41550-022-01835-4 (2022).
Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 å). Astrophys. J. 622, 680–694 (2005).
Jackson, A. P., Davis, T. A. & Wheatley, P. J. The coronal X-ray-age relation and its implications for the evaporation of exoplanets. Mon. Not. R. Astron. Soc. 422, 2024–2043 (2012).
Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).
Güdel, M., Guinan, E. F. & Skinner, S. L. The X-ray sun in time: a study of the long-term evolution of coronae of solar-type stars. Astrophys. J. 483, 947–960 (1997).
Owen, J. E. & Jackson, A. P. Planetary evaporation by UV & X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).
Owen, J. E. & Campos Estrada, B. Testing exoplanet evaporation with multitransiting systems. Mon. Not. R. Astron. Soc. 491, 5287–5297 (2020).
Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).
Piro, A. L. Exoplanets torqued by the combined tides of a moon and parent star. Astron. J 156, 54 (2018).
Piro, A. L. & Vissapragada, S. Exploring whether super-puffs can be explained as ringed exoplanets. Astron. J 159, 131 (2020).
Ribas, I. et al. The habitability of Proxima Centauri b—I. Irradiation, rotation and volatile inventory from formation to the present. Astron. Astrophys. 596, A111 (2016).
Leconte, J., Wu, H., Menou, K. & Murray, N. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015).
Fischer, H.-J. & Spohn, T. Thermal-orbital histories of viscoelastic models of Io (J1). Icarus 83, 39–65 (1990).
Moore, W. B. Tidal heating and convection in Io. J. Geophys. Res. 108, 5096 (2003).
Henning, W. G., O’Connell, R. J. & Sasselov, D. D. Tidally heated terrestrial exoplanets: viscoelastic response models. Astrophys. J. 707, 1000–1015 (2009).
Dobos, V. & Turner, E. L. Viscoelastic models of tidally heated exomoons. Astrophys. J. 804, 41 (2015).
Barr, A. C., Dobos, V. & Kiss, L. L. Interior structures and tidal heating in the TRAPPIST-1 planets. Astron. Astrophys. 613, A37 (2018).
Segatz, M., Spohn, T., Ross, M. N. & Schubert, G. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75, 187–206 (1988).
Solomatov, V. S. & Moresi, L.-N. Scaling of time-dependent stagnant lid convection: application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res. 105, 21795–21818 (2000).
Barr, A. C. Mobile lid convection beneath Enceladus’ south polar terrain. J. Geophys. Res. 113, E07009 (2008).
Renner, J., Evans, B. & Hirth, G. On the rheologically critical melt fraction. Earth Planet. Sci. Lett. 181, 585–594 (2000).
Yang, J., Liu, Y., Hu, Y. & Abbot, D. S. Water trapping on tidally locked terrestrial planets requires special conditions. Astrophys. J. 796, L22 (2014).
Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass–radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).