Dosimetry; Molecular radiotherapy; Nuclear medicine; Optimisation; Quantitative imaging; SPECT; Iodine-131; Iodine Radioisotopes; 3-Iodobenzylguanidine; Humans; Radiometry/methods; Neuroendocrine Tumors/diagnostic imaging; Neuroendocrine Tumors/radiotherapy; Neuroendocrine Tumors; Radiometry; Radiology, Nuclear Medicine and Imaging; General Medicine
Abstract :
[en] Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [131I]-NaI for benign thyroid disorders, [177Lu]-DOTATATE and 131I-mIBG for neuroendocrine tumours and [90Y]-microspheres for unresectable hepatic carcinoma.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Gear, Jonathan ; Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK. jonathan.gear@icr.ac.uk
Stokke, Caroline; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway ; Department of Physics, University of Oslo, Oslo, Norway
Terwinghe, Christelle; Department of Nuclear Medicine, Universitair Ziekenhuis Leuven, Louvain, Belgium
Gnesin, Silvano; Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
Sandström, Mattias; Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ; Sweden & Section of Medical Physics, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
Tran-Gia, Johannes; Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
Cremonesi, Marta; Radiation Research Unit, Department of Medical Imaging and Radiation Sciences, Istituto Europeo Di Oncologia, IRCCS, Milan, Italy
Cicone, Francesco; Department of Experimental and Clinical Medicine, Neuroscience Research Centre, PET/RM Unit, "Magna Graecia" University of Catanzaro, Catanzaro, Italy ; Nuclear Medicine Unit, University Hospital "Mater Domini, Catanzaro, Italy
Verburg, Fredrik; Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
Hustinx, Roland ; Centre Hospitalier Universitaire de Liège - CHU > > Service médical de médecine nucléaire et imagerie onco
Giovanella, Luca; Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
Herrmann, Ken; Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany ; German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
Gabiña, Pablo Minguez; Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Health Research Institute, Barakaldo, Spain ; Department of Applied Physics, Faculty of Engineering, UPV/EHU, Bilbao, Spain
NIHR BRC - NIHR Imperial Biomedical Research Centre ICR - Institute of Cancer Research
Funding text :
KH reports personal fees from Bayer, personal fees and other from Sofie Biosciences, personal fees from SIRTEX, non-financial support from ABX, personal fees from Adacap, personal fees from Curium, personal fees from Endocyte, grants and personal fees from BTG, personal fees from IPSEN, personal fees from Siemens Healthineers, personal fees from GE Healthcare, personal fees from Amgen, personal fees from Novartis, personal fees from ymabs, all outside the submitted work. LG reports personal fees from Roche Diagnostics and SNIBE for advisory board participation, and research support from Roche Diagnostics., all outside the submitted work.
Chiesa C, et al. A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with Y-90 glass microspheres. Q J Nucl Med Mol Imaging. 2012;56(6):503–8.
Del Prete M, Buteau FA, Beauregard JM. Personalized Lu-177-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study. Eur J Nucl Med Mol Imaging. 2017;44(9):1490–500. DOI: 10.1007/s00259-017-3688-2
Maxon HR, et al. Radioiodine-131 therapy for well-differentiated thyroid-cancer - a quantitative radiation dosimetric approach - outcome and validation in 85 patients. J Nucl Med. 1992;33(6):1132–6.
Sandstrom M, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing Lu-177-DOTA-octreotate treatment. J Nucl Med. 2013;54(1):33–41. DOI: 10.2967/jnumed.112.107524
Stokkel MPM, et al. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2218–28. DOI: 10.1007/s00259-010-1536-8
Strigari L, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41(10):1976–88. DOI: 10.1007/s00259-014-2824-5
Garin E, et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6(1):17–29. DOI: 10.1016/S2468-1253(20)30290-9
Garske-Roman U, et al. Prospective observational study of Lu-177-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45(6):970–88. DOI: 10.1007/s00259-018-3945-z
Allimant C, et al. Tumor targeting and three-dimensional voxel-based dosimetry to predict tumor response, toxicity, and survival after yttrium-90 resin microsphere radioembolization in hepatocellular carcinoma. J Vasc Interv Radiol. 2018;29(12):1662–70. DOI: 10.1016/j.jvir.2018.07.006
Cremonesi M, et al. Correlation of dose with toxicity and tumour response to Y-90- and Lu-177-PRRT provides the basis for optimization through individualized treatment planning. Eur J Nucl Med Mol Imaging. 2018;45(13):2426–41. DOI: 10.1007/s00259-018-4044-x
Del Prete M, et al. Personalized Lu-177-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial. Eur J Nucl Med Mol Imaging. 2019;46(3):728–42. DOI: 10.1007/s00259-018-4209-7
Dewaraja YK, et al. Tumor-absorbed dose predicts progression-free survival following I-131-tositumomab radioimmunotherapy. J Nucl Med. 2014;55(7):1047–53. DOI: 10.2967/jnumed.113.136044
Levillain H, et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur J Nucl Med Mol Imaging. 2021;48(5):1570–84. DOI: 10.1007/s00259-020-05163-5
Council Directive 2013/59/Euratom. Official Journal of the European Union, 2013. 56.
Konijnenberg M, et al. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur J Nucl Med Mol Imaging. 2021;48(1):67–72. DOI: 10.1007/s00259-020-05038-9
Sgouros G et al. ICRU Report 96, Dosimetry-guided radiopharmaceutical therapy, in Journal of the ICRU. 2022, The International Commission On Radiation Units And Measurements.
Herrmann K, et al. Joint EANM, SNMMI and IAEA enabling guide: how to set up a theranostics centre. Eur J Nucl Med Mol Imaging. 2022;49(7):2300–9. DOI: 10.1007/s00259-022-05785-x
Herrmann K et al. Joint EANM, SNMMI and IAEA enabling guide: how to set up a theranostics centre. J Nucl Med 2022. jnumed.122.264321.
Gabiña PM et al. Results from an EANM survey on time estimates and personnel responsible for main tasks in molecular radiotherapy dosimetry. Eur J Nucl Med Mol Imaging. 2023. 10.1007/s00259-023-06215-2
Taprogge J, Leek F, Flux GD. Physics aspects of setting up a multicenter clinical trial involving internal dosimetry of radioiodine treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2019;63(3):271–7. DOI: 10.23736/S1824-4785.19.03202-3
Tran-Gia J, Denis-Bacelar AM, Ferreira KM, et al. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys. 2021;8:55. 10.1186/s40658-021-00397-0
Hindorf C, et al. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–50. DOI: 10.1007/s00259-010-1422-4
Ligonnet T, et al. Simplified patient-specific renal dosimetry in Lu-177 therapy: a proof of concept. Physica Medica-Eur J Med Phys. 2021;92:75–85. DOI: 10.1016/j.ejmp.2021.11.007
Hanscheid H, et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40(7):1126–34. DOI: 10.1007/s00259-013-2387-x
Hanscheid H, et al. Absorbed dose estimates from a single measurement one to three days after the administration of Lu-177-DOTATATE/-TOC. Nuklearmedizin-Nuclear Medicine. 2017;56(6):219–24. DOI: 10.3413/Nukmed-0925-17-08
Sundlöv A, Gustafsson J, Brolin G, Mortensen N, Hermann R, Bernhardt P, Svensson J, Ljungberg M, Tennvall J, Sjögreen Gleisner K. Feasibility of simplifying renal dosimetry in 177Lu peptide receptor radionuclide therapy. EJNMMI Phys. 2018;5(1):12. 10.1186/s40658-018-0210-2
Ljungberg M, et al. MIRD Pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative Lu-177 SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57(1):151–62. DOI: 10.2967/jnumed.115.159012
Gleisner KS, et al. EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging. 2022;49(6):1778–809. DOI: 10.1007/s00259-022-05727-7
Gear J, Chiesa C, Lassmann M, et al. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys. 2020;7:15. 10.1186/s40658-020-0282-7
Lassmann M, et al. EANM Dosimetry Committee series on standard operational rocedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12. DOI: 10.1007/s00259-008-0761-x
Hanscheid H, et al. Dose mapping after endoradiotherapy with Lu-177-DOTATATE/DOTATOC by a single measurement after 4 days. J Nucl Med. 2018;59(1):75–81. DOI: 10.2967/jnumed.117.193706
Jackson PA, et al. Radiation dosimetry in Lu-177-PSMA-617 therapy using a single posttreatment SPECT/CT scan: a novel methodology to generate time- and tissue-specific dose factors. J Nucl Med. 2020;61(7):1030–6. DOI: 10.2967/jnumed.119.233411
Ryden T, et al. Deep-learning generation of synthetic intermediate projections improves Lu-177 SPECT images reconstructed with sparsely acquired projections. J Nucl Med. 2021;62(4):528–35. DOI: 10.2967/jnumed.120.245548
Chiesa C et al. EANM dosimetry committee series on standard operational procedures: a unified methodology for Tc-99m-MAA pre- and Y-90 peri-therapy dosimetry in liver radioembolization with Y-90 microspheres. Ejnmmi Phys. 2021. 8(1).
Deppen SA, et al. Ga-68-DOTATATE compared with In-111-DTPA-octreotide and conventional imaging for pulmonary and gastroenteropancreatic neuroendocrine tumors: a systematic review and meta-analysis. J Nucl Med. 2016;57(6):872–8. DOI: 10.2967/jnumed.115.165803
Della Gala G, et al. Overview of commercial treatment planning systems for targeted radionuclide therapy. Phys Med. 2021;92:52–61. DOI: 10.1016/j.ejmp.2021.11.001
Mora-Ramirez E, et al. Comparison of commercial dosimetric software platforms in patients treated with Lu-177-DOTATATE for peptide receptor radionuclide therapy. Med Phys. 2020;47(9):4602–15. DOI: 10.1002/mp.14375
Fedorov A, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323–41. DOI: 10.1016/j.mri.2012.05.001
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. DOI: 10.1038/nmeth.2019
Bodei L, et al. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol. 2022;19(8):534–50. DOI: 10.1038/s41571-022-00652-y
Sartor O, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–103. DOI: 10.1056/NEJMoa2107322
Pouget JP, et al. An EANM position paper on advancing radiobiology for shaping the future of nuclear medicine. Eur J Nucl Med Mol Imaging. 2023;50(2):242–6. DOI: 10.1007/s00259-022-05934-2