Bonhomme, V., Staquet, C., Montupil, J., et al. General anesthesia: a probe to explore consciousness. Front Syst Neurosci, 13, 2019, 36.
Sarasso, S., Boly, M., Napolitani, M., et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol 25 (2015), 3099–3105.
Bonhomme, V., Vanhaudenhuyse, A., Demertzi, A., et al. Resting-state network-specific breakdown of functional connectivity during ketamine alteration of consciousness in volunteers. Anesthesiology 125 (2016), 873–888.
Darracq, M., Funk, C.M., Polyakov, D., et al. Evoked alpha power is reduced in disconnected consciousness during sleep and anesthesia. Sci Rep, 8, 2018, 16664.
Evered, L., Silbert, B., Knopman, D.S., et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Br J Anaesth 125 (2018), 1005–1012.
Zhang, J., Yu, Y., Miao, S., et al. Effects of peri-operative intravenous administration of dexmedetomidine on emergence agitation after general anesthesia in adults: a meta-analysis of randomized controlled trials. Drug Des Devel Ther 13 (2019), 2853–2864.
Duan, X., Coburn, M., Rossaint, R., Sanders, R.D., Waesberghe, J.V., Kowark, A., Efficacy of perioperative dexmedetomidine on postoperative delirium: systematic review and meta-analysis with trial sequential analysis of randomised controlled trials. Br J Anaesth England 121 (2018), 384–397.
Djaiani, G., Silverton, N., Fedorko, L., et al. Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial. Anesthesiology 124 (2016), 362–368.
Purdon, P.L., Sampson, A., Pavone, K.J., Brown, E.N., Clinical electroencephalography for anesthesiologists. Anesthesiology 123 (2015), 937–960.
Yu, X., Franks, N.P., Wisden, W., Sleep and sedative states induced by targeting the histamine and noradrenergic systems. Front Neural Circuits, 12, 2018, 4.
Guldenmund, P., Vanhaudenhuyse, A., Sanders, R.D., et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br J Anaesth 119 (2017), 674–684.
Akeju, O., Loggia, M.L., Catana, C., et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. Elife, 3, 2014, e04499.
Kallionpää, R.E., Scheinin, A., Kallionpää, R.A., et al. Spoken words are processed during dexmedetomidine-induced unresponsiveness. Br J Anaesth 121 (2018), 270–280.
Akeju, O., Kim, S.E., Vazquez, R., et al. Spatiotemporal dynamics of dexmedetomidine-induced electroencephalogram oscillations. PLoS One, 11, 2016, e0163431.
Scheinin, A., Kallionpää, R.E., Li, D., et al. Differentiating drug-related and state-related effects of dexmedetomidine and propofol on the electroencephalogram. Anesthesiology 129 (2018), 22–36.
Massimini, M., Ferrarelli, F., Murphy, M.J., et al. Cortical reactivity and effective connectivity during REM sleep in humans. Cogn Neurosci 1 (2010), 176–183.
Huber, R., Mäki, H., Rosanova, M., et al. Human cortical excitability increases with time awake. Cereb Cortex 23 (2013), 332–338.
Ly, J.Q.M., Gaggioni, G., Chellappa, S.L., et al. Circadian regulation of human cortical excitability. Nat Commun, 7, 2016, 11828.
Chia, C.H., Tang, X.W., Cao, Y., et al. Cortical excitability signatures for the degree of sleepiness in human. Elife, 10, 2021, e65099.
Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Breakdown of cortical effective connectivity during sleep. Science 309 (2005), 2228–2232.
Cardone, P., Van Egroo, M., Chylinski, D., Narbutas, J., Gaggioni, G., Vandewalle, G., Increased cortical excitability but stable effective connectivity index during attentional lapses. Sleep, 44, 2021, zsaa284.
Dyck, J.B., Maze, M., Haack, C., Azarnoff, D.L., Vuorilehto, L., Shafer, S.L., Computer-controlled infusion of intravenous dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology 78 (1993), 821–828.
Malviya, S., Voepel-Lewis, T., Tait, A.R., Merkel, S., Tremper, K., Naughton, N., Depth of sedation in children undergoing computed tomography: validity and reliability of the University of Michigan Sedation Scale (UMSS). Br J Anaesth 88 (2002), 241–245.
Ramsay, M.A.E., Savege, T.M., Simpson, B.R.J., Goodwin, R., Controlled sedation with alphaxalone-alphadolone. Br Med J 2 (1974), 656–659.
Sanders, R.D., Mostert, N., Lindroth, H., Tononi, G., Sleigh, J., Is consciousness frontal? Two perioperative case reports that challenge that concept. Br J Anaesth 121 (2018), 330–332.
Boly, M., Massimini, M., Tsuchiya, N., Postle, B.R., Koch, C., Tononi, G., Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J Neurosci 37 (2017), 9603–9613.
Leonowicz, Z., Karvanen, J., Shishkin, S.L., Trimmed estimators for robust averaging of event-related potentials. J Neurosci Methods 142 (2005), 17–26.
Casali, A.G., Gosseries, O., Rosanova, M., et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med, 5, 2013, 198ra105.
Rosanova, M., Fecchio, M., Casarotto, S., et al. Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat Commun, 9, 2018, 4427.
Sachdev, R.N.S., Ebner, F.F., Wilson, C.J., Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J Neurophysiol 92 (2004), 3511–3521.
Wörgötter, F., Suder, K., Zhao, Y., Kerscher, N., Eysel, U.T., Funke, K., State-dependent receptive-field restructuring in the visual cortex. Nature 396 (1998), 165–168.
Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J., Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22 (2002), 8691–8704.
Hill, S., Tononi, G., Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93 (2005), 1671–1698.
Noreika, V., Kamke, M., Canales-Johnson, A., Chennu, S., Bekinschtein, T., Mattingley, J., Alertness fluctuations during task performance modulate cortical evoked responses to transcranial magnetic stimulation. Neuroimage, 2020, 155754.
Fecchio, M., Pigorini, A., Comanducci, A., et al. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials. PLoS One, 12, 2017, e0184910.
Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M., Massimini, M., Natural frequencies of human corticothalamic circuits. J Neurosci 29 (2009), 7679–7685.
Ziemann, U., TMS and drugs. Clin Neurophysiol 115 (2004), 1717–1729.
Tran, D.M.D., McNair, N.A., Harris, J.A., Livesey, E.J., Expected TMS excites the motor system less effectively than unexpected stimulation. Neuroimage, 226, 2021, 117541.
Darmani, G., Bergmann, T.O., Zipser, C., Baur, D., Müller-Dahlhaus, F., Ziemann, U., Effects of antiepileptic drugs on cortical excitability in humans: a TMS-EMG and TMS-EEG study. Hum Brain Mapp 40 (2019), 1276–1289.
Bergmann, T.O., Molle, M., Schmidt, M.A., et al. EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci 32 (2012), 243–253.
Shin, H., Law, R., Tsutsui, S., Moore, C.I., Jones, S.R., The rate of transient beta frequency events predicts behavior across tasks and species. Elife, 6, 2017, e29086.
Ballesteros, J.J., Briscoe, J.B., Ishizawa, Y., Neural signatures of α2-adrenergic agonist-induced unconsciousness and awakening by antagonist. Elife, 9, 2020, e57670.
Huang, Y.Z., Lu, M.K., Antal, A., et al. Plasticity induced by non-invasive transcranial brain stimulation: a position paper. Clin Neurophysiol 128 (2017), 2318–2329.
Stagg, C.J., Antal, A., Nitsche, M.A., Physiology of Transcranial direct current stimulation. J ECT 34 (2018), 144–152.
Tatti, R., Haley, M.S., Swanson, O.K., Tselha, T., Maffei, A., Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biol Psychiatry 81 (2017), 821–831.
Xi, C., Sun, S., Pan, C., Ji, F., Cui, X., Li, T., Different effects of propofol and dexmedetomidine sedation on electroencephalogram patterns: wakefulness, moderate sedation, deep sedation and recovery. PLoS One, 13, 2018, e0199120.