Bio-based products; Biomass cellulose; Cellulose and hemicellulose; Cellulose crystallinity; Crosslinked structures; Lignocellulosic biomass; Lignocellulosic material; Multisteps; Pre-treatments; Production pathways; Chemistry (all); Chemical Engineering (all); General Chemical Engineering; General Chemistry
Abstract :
[en] Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.
Disciplines :
Chemistry
Author, co-author :
Kammoun, Maroua ; Université de Liège - ULiège > Département GxABT > Technologie Alimentaire (TA)
Margellou, Antigoni ; Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
Toteva, Vesislava B; Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy Sofia Bulgaria
Aladjadjiyan, Anna; National Biomass Association Plovdiv Bulgaria
Sousa, Andreai F ; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal ; Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima-Polo II 3030-790 Coimbra Portugal
Luis, Santiago V; Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
Garcia-Verdugo, Eduardo ; Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
Triantafyllidis, Konstantinos S ; Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Technologie Alimentaire (TA)
Language :
English
Title :
The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds.
COST - European Cooperation in Science and Technology FCT - Fundação para a Ciência e a Tecnologia CICECO - Centro de Investigação em Materiais Cerâmicos e Compósitos FEDER - Federación Española de Enfermedades Raras
Funding text :
This publication is supported by COST Action FUR4Sustain—European network of FURan based chemicals and materials FOR a Sustainable development, CA18220, supported by COST (European Cooperation in Science and Technology). This work was developed within the scope of CICECO—Aveiro Institute of Materials (UIDB/50011/2020 & UIDP/50011/2020) & LA/P/0006/2020, financed by national funds through the FCT—Fundação para a Ciência e a Tecnologia/MEC (PIDDAC). This research is also sponsored by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitivid-ade—and by national funds through the FCT under the project UID/EMS/00285/2020. The FCT is also acknowledged for the re-search contract under Scientific Employment Stimulus to A. F. S. (CEECIND/02322/2020). Our final words go to our dearly remembered college and friend Anna Aladjadjiyan.
Manzanares P. The role of biorefinering research in the development of a mpder n bioeconomy Acta Innov. 2020 37 47 56
Gandini A. Lacerda T. M. Carvalho A. J. F. Trovatti E. Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides Chem. Rev. 2016 116 1637 1669
Van Putten R. J. et al., Hydroxymethylfurfural, a versatile platform chemical made from renewable resources Chem. Rev. 2013 113 1499 1597
Scapini T. et al., Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery Bioresour. Technol. 2021 342 126033
Ruiz H. A. et al., Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept Bioresour. Technol. 2020 299 122685
Wang R. et al., Hydrothermal CO2-assisted Pretreatment of Wheat Straw for Hemicellulose Degradation Followed with Enzymatic Hydrolysis for Glucose Production Waste Biomass Valorization 2021 12 1483 1492
Martín-Lara M. A. et al., Liquid Hot Water Pretreatment and Enzymatic Hydrolysis as a Valorization Route of Italian Green Pepper Waste to Delivery Free Sugars Foods 2020 9 1640
Meenakshisundaram S. Fayeulle A. Leonard E. Ceballos C. Pauss A. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass - A review Bioresour. Technol. 2021 331 125053
Kuo C. H. Lee C. K. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment Bioresour. Technol. 2009 100 866 871
Badgujar K. C. Bhanage B. M. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: Current status, overview and challenges Bioresour. Technol. 2015 178 2 18
Lynam J. G. Kumar N. Wong M. J. Deep eutectic solvents' ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density Bioresour. Technol. 2017 238 684 689
Scelsi E. Angelini A. Pastore C. Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals Biomass 2021 1 29 59
Akalın M. K. Tekin K. Karagöz S. Supercritical fluid extraction of biofuels from biomass Environ. Chem. Lett. 2017 15 29 41
Peleteiro S. Rivas S. Alonso J. L. Santos V. Parajó J. C. Furfural production using ionic liquids: A review Bioresour. Technol. 2016 202 181 191
Rosatella A. A. Simeonov S. P. Frade R. F. M. Afonso C. A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications Green Chem. 2011 13 754 793
Zakrzewska M. E. Bogel-Łukasik E. Bogel-Łukasik R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block Chem. Rev. 2011 111 397 417
Davidson M. G. Elgie S. Parsons S. Young T. J. Production of HMF, FDCA and their derived products: a review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies Green Chem. 2021 23 3154 3171
Kammoun M. et al., Hydrothermal dehydration of monosaccharides promoted by seawater: fundamentals on the catalytic role of inorganic salts Front. Chem. 2019 7 132
Istasse T. Richel A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design RSC Adv. 2020 10 23720 23742
Marianou A. A. et al., Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media Appl. Catal., A 2018 555 75 87
Xue Z. Ma M. G. Li Z. Mu T. Advances in the conversion of glucose and cellulose to 5-hydroxymethylfurfural over heterogeneous catalysts RSC Adv. 2016 6 98874 98892
Zhang T. et al., Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural Mol. Catal. 2020 498 111254
Zhu L. Fu X. Hu Y. Hu C. Controlling the Reaction Networks for Efficient Conversion of Glucose into 5-Hydroxymethylfurfural ChemSusChem 2020 13 4812 4832
Caes B. R. Teixeira R. E. Knapp K. G. Raines R. T. Biomass to Furanics: Renewable Routes to Chemicals and Fuels ACS Sustainable Chem. Eng. 2015 3 2591 2605
Zhou P. Zhang Z. One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural Catal. Sci. Technol. 2016 6 3694 3712
Saha B. Abu-Omar M. M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents Green Chem. 2014 16 24 38
Mariscal R. Maireles-Torres P. Ojeda M. Sádaba I. López Granados M. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels Energy Environ. Sci. 2016 9 1144 1189
Delbecq F. et al., Hydrolysis of hemicellulose and derivatives-a review of recent advances in the production of furfural Front. Chem. 2018 6 146
Luo Y. et al., The production of furfural directly from hemicellulose in lignocellulosic biomass: A review Catal. Today 2019 319 14 24
Luterbacher J. S. et al., Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone Science 2014 343 277 280
Sousa A. F. et al., Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts Green Chem. 2021 23 8795 8820
Sousa A. F. et al., Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency Polym. Chem. 2015 6 5961 5983
Eid N. Ameduri B. Boutevin B. Synthesis and Properties of Furan Derivatives for Epoxy Resins ACS Sustainable Chem. Eng. 2021 9 8018 8031
Kainulainen T. P. Erkkilä P. Hukka T. I. Sirviö J. A. Heiskanen J. P. Application of Furan-Based Dicarboxylic Acids in Bio-Derived Dimethacrylate Resins ACS Appl. Polym. Mater. 2020 2 3215 3225
Zhang D. Dumont M. J. Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural J. Polym. Sci., Part A: Polym. Chem. 2017 55 1478 1492
Kong X. et al., Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives Green Chem. 2018 20 3657 3682
Kammoun M. Ayeb H. Bettaieb T. Richel A. Chemical characterisation and technical assessment of agri-food residues, marine matrices, and wild grasses in the South Mediterranean area: A considerable inflow for biorefineries Waste Manage. 2020 118 247 257
S2Biom Project Grant Agreement no. 608622 D8.2 Vision for 1 billion dry tonnes lignocellulosic biomass as a contribution to biobased economy by 2030 in Europe Delivery of sustainable supply of non-food biomass to support a ‘resource-efficient’ Bioeconomy in Europe, 2016
Zhou X. Li W. Mabon R. Broadbelt L. J. A Critical Review on Hemicellulose Pyrolysis Energy Technol. 2017 5 52 79
Isikgor F. H. Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers Polym. Chem. 2015 6 4497 4559
Kumar A. K. Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review Bioresour. Bioprocess. 2017 4 1 19
Montipó S. et al., Integrated production of second generation ethanol and lactic acid from steam-exploded elephant grass Bioresour. Technol. 2018 249 1017 1024
Baruah J. et al., Recent trends in the pretreatment of lignocellulosic biomass for value-added products Front. Energy Res. 2018 6 141
Carvalheiro F., Duarte L. C., Gírio F. and Moniz P., Hydrothermal/Liquid Hot Water Pretreatment (Autohydrolysis): A Multipurpose Process for Biomass Upgrading, Biomass Fractionation Technol. a Lignocellul. Feed. Based Biorefinery, 2016, pp. 315-347, https://dx.doi.org/10.1016/B978-0-12-802323-5.00014-1
Liao Y. et al., The role of pretreatment in the catalytic valorization of cellulose Mol. Catal. 2020 487 110883
Li M. et al., The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar Biotechnol. Biofuels 2017 10 1 13
Nitsos C. K. Matis K. A. Triantafyllidis K. S. Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process ChemSusChem 2013 6 110 122
Yang B. Tao L. Wyman C. E. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries Biofuels, Bioprod. Biorefin. 2018 12 125 138
Zhuang X. et al., Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products Bioresour. Technol. 2016 199 68 75
Agbor V. B. Cicek N. Sparling R. Berlin A. Levin D. B. Biomass pretreatment: Fundamentals toward application Biotechnol. Adv. 2011 29 675 685
Chen H. Z. Liu Z. H. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products Biotechnol. J. 2015 10 866 885
Duque A., Manzanares P., Ballesteros I. and Ballesteros M., Steam Explosion as Lignocellulosic Biomass Pretreatment, Biomass Fractionation Technol. a Lignocellul. Feed. Based Biorefinery, 2016, pp. 349-368, https://dx.doi.org/10.1016/B978-0-12-802323-5.00015-3
Larsen J. Haven M. Ø. Thirup L. Inbicon makes lignocellulosic ethanol a commercial reality Biomass Bioenergy 2012 46 36 45
Xiros C. et al., Toward a sustainable biorefinery using high-gravity technology Biofuels, Bioprod. Biorefin. 2017 11 15 27
Steinbach D. Kruse A. Sauer J. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-A review Biomass Convers. Biorefin. 2017 7 247 274
Gullón P. Romaní A. Vila C. Garrote G. Parajó J. C. Potential of hydrothermal treatments in lignocellulose biorefineries Biofuels, Bioprod. Biorefin. 2012 6 219 232
Möller M. Nilges P. Harnisch F. Schröder U. Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation ChemSusChem 2011 4 566 579
Carvalheiro F. Garrote G. Parajó J. C. Pereira H. Gírio F. M. Kinetic Modeling of Breweryapos;s Spent Grain Autohydrolysis Biotechnol. Prog. 2005 21 233 243
Nitsos C. K. Choli-Papadopoulou T. Matis K. A. Triantafyllidis K. S. Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis ACS Sustainable Chem. Eng. 2016 4 4529 4544
Danon B. Marcotullio G. De Jong W. Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis Green Chem. 2014 16 39 54
Dunlop A. P. Furfural Formation and Behavior Ind. Eng. Chem. 1948 40 204 209
Hendriks A. T. W. M. Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass Bioresour. Technol. 2009 100 10 18
Overend R. P. Chornet E. Fractionation of lignocellulosics by steam-aqueous pretreatments Philos. Trans. R. Soc., A 1987 321 523 536
Pedersen M. Viksø-Nielsen A. Meyer A. S. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment Process Biochem. 2010 45 1181 1186
Duarte L. C. et al., Comparison of Two Posthydrolysis Processes of Brewery's Spent Grain Autohydrolysis Liquor to Produce a Pentose-Containing Culture Medium, Proc. Twenty-Fifth Symp. Biotechnol. Fuels Chem., held May 4-7, 2003, Breckenridge, CO 1041-1058, 2004, https://dx.doi.org/10.1007/978-1-59259-837-3_85
Fockink D. H. Sánchez J. H. Ramos L. P. Comprehensive analysis of sugarcane bagasse steam explosion using autocatalysis and dilute acid hydrolysis (H3PO4 and H2SO4) at equivalent combined severity factors Ind. Crops Prod. 2018 123 563 572
Kabel M. A. Bos G. Zeevalking J. Voragen A. G. J. Schols H. A. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw Bioresour. Technol. 2007 98 2034 2042
Nitsos C. Matsakas L. Triantafyllidis K. Rova U. Christakopoulos P. Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production Biofuels 2018 9 545 558
Garrote G. Domínguez H. Parajó J. C. Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood J. Chem. Technol. Biotechnol. 1999 74 1101 1109
Vallejos M. E. Zambon M. D. Area M. C. Da Silva Curvelo A. A. Low liquid-solid ratio (LSR) hot water pretreatment of sugarcane bagasse Green Chem. 2012 14 1982 1989
Ruiz H. A., H Thomsen M. and Trajano H. L., Hydrothermal Processing in Biorefineries, 2017, https://dx.doi.org/10.1007/978-3-319-56457-9
Ruiz H. A. et al., Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions J. Chem. Technol. Biotechnol. 2011 86 88 94
Cara C. Romero I. Oliva J. M. Sáez F. Castro E. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues Appl. Biochem. Biotechnol. 2007 379 394 https://dx.doi.org/10.1007/978-1-60327-181-3_33
Dimos K. et al., Effect of Various Pretreatment Methods on Bioethanol Production from Cotton Stalks Ferment 2019 5 5
Ilanidis D. Stagge S. Jönsson L. J. Martín C. Effects of operational conditions on auto-catalyzed and sulfuric-acid-catalyzed hydrothermal pretreatment of sugarcane bagasse at different severity factor Ind. Crops Prod. 2021 159 113077
Michelin M. Ximenes E. de Lourdes Teixeira de Moraes Polizeli M. Ladisch M. R. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities Bioresour. Technol. 2016 199 275 278
Inoue H. Yano S. Endo T. Sakaki T. Sawayama S. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus Biotechnol. Biofuels 2008 1 1 9
Kim Y. Ximenes E. Mosier N. S. Ladisch M. R. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass Enzyme Microb. Technol. 2011 48 408 415
Deng A. Ren J. Li H. Peng F. Sun R. Corncob lignocellulose for the production of furfural by hydrothermal pretreatment and heterogeneous catalytic process RSC Adv. 2015 5 60264 60272
Michelin M. Teixeira J. A. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof Bioresour. Technol. 2016 216 862 869
Wen P. Zhang T. Wang J. Lian Z. Zhang J. Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment Biotechnol. Biofuels 2019 12 1 13
López L. Rivas S. Moure A. Vila C. Parajó J. C. Development of Pretreatment Strategies for the Fractionation of Hazelnut Shells in the Scope of Biorefinery Agron 2020 10 1568
Sabanci K. Buyukkileci A. O. Comparison of liquid hot water, very dilute acid and alkali treatments for enhancing enzymatic digestibility of hazelnut tree pruning residues Bioresour. Technol. 2018 261 158 165
Pérez J. A. et al., Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production Fuel 2008 87 3640 3647
Cebreiros F. Clavijo L. Boix E. Ferrari M. D. Lareo C. Integrated valorization of eucalyptus sawdust within a biorefinery approach by autohydrolysis and organosolv pretreatments Renewable Energy 2020 149 115 127
Fujimoto S. Inoue S. Yoshida M. High solid concentrations during the hydrothermal pretreatment of eucalyptus accelerate hemicellulose decomposition and subsequent enzymatic glucose production Bioresour. Technol. Rep. 2018 4 16 20
Capolupo L. Faraco V. Green methods of lignocellulose pretreatment for biorefinery development Appl. Microbiol. Biotechnol. 2016 100 9451 9467
Tiappi Deumaga M. F. et al., Fractionation and Structural Characterization of Hemicellulose from Steam-Exploded Banana Rachis Waste Biomass Valorization 2018 11 2183 2192
Maniet G. et al., Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin Ind. Crops Prod. 2017 99 79 85
Barbanera M. Buratti C. Cotana F. Foschini D. Lascaro E. Effect of Steam Explosion Pretreatment on Sugar Production by Enzymatic Hydrolysis of Olive Tree Pruning Energy Procedia 2015 81 146 154
Zhuang X. Yu Q. Yuan Z. Kong X. Qi W. Effect of hydrothermal pretreatment of sugarcane bagasse on enzymatic digestibility J. Chem. Technol. Biotechnol. 2015 90 1515 1520
Xu J. Thomsen M. H. Thomsen A. B. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover Appl. Microbiol. Biotechnol. 2010 86 509 516
Dimitrellos G. Lyberatos G. Antonopoulou G. Does Acid Addition Improve Liquid Hot Water Pretreatment of Lignocellulosic Biomass towards Biohydrogen and Biogas Production? Sustainability 2020 12 8935
Rojas-Chamorro J. A. Romero I. López-Linares J. C. Castro E. Brewer's spent grain as a source of renewable fuel through optimized dilute acid pretreatment Renewable Energy 2020 148 81 90
Yang H. Wang K. Xu F. Sun R. C. Lu Y. H2SO4-catalyzed hydrothermal pretreatment of triploid poplar to enhance enzymatic hydrolysis Ind. Eng. Chem. Res. 2012 51 11598 11604
Katsimpouras C. Christakopoulos P. Topakas E. Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content Bioprocess Biosyst. Eng. 2016 39 1415 1423
Linde M. Jakobsson E. L. Galbe M. Zacchi G. Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production Biomass Bioenergy 2008 32 326 332
Sibilla F. and de María P. D., Integrating White Biotechnology in Lignocellulosic Biomass Transformations: From Enzyme-Catalysis to Metabolic Engineering, Role Catal. Sustain. Prod. Bio-Fuels Bio-Chemicals, 2013, pp. 445-466, https://dx.doi.org/10.1016/B978-0-444-56330-9.00013-9
Nitsos C. K., Mihailof C. M., Matis K. A., Lappas A. A. and Triantafyllidis K. S., The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals, Role Catal. Sustain. Prod. Bio-Fuels Bio-Chemicals, 2013, pp. 217-260, https://dx.doi.org/10.1016/B978-0-444-56330-9.00007-3
Bhutto A. W. et al., Insight into progress in pre-treatment of lignocellulosic biomass Energy 2017 122 724 745
Hernández-Beltrán J. U. et al., Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities Appl. Sci. 2019 9 3721
Ahmad F. Silva E. L. Varesche M. B. A. Hydrothermal processing of biomass for anaerobic digestion - A review Renewable Sustainable Energy Rev. 2018 98 108 124
Nitsos C. K. Lazaridis P. A. Mach-Aigner A. Matis K. A. Triantafyllidis K. S. . Enhancing Lignocellulosic Biomass Hydrolysis by Hydrothermal Pretreatment, Extraction of Surface Lignin, Wet Milling and Production of Cellulolytic Enzymes ChemSusChem 2019 12 1179 1195
Senila L. et al., Bioethanol Production from Vineyard Waste by Autohydrolysis Pretreatment and Chlorite Delignification via Simultaneous Saccharification and Fermentation Mol 2020 25 2606
Kim S. M. Dien B. S. Singh V. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass Biotechnol. Biofuels 2016 9 1 15
Kougioumtzis M. A. et al., Production of 5-HMF from Cellulosic Biomass: Experimental Results and Integrated Process Simulation Waste Biomass Valorization 2018 9 2433 2445
García-Aparicio M. P. et al., Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis Appl. Biochem. Biotechnol. 2006 129 278 288
Miura M. Shimotori Y. Nakatani H. Harada A. Aoyama M. Bioconversion of Birch Wood Hemicellulose Hydrolyzate to Xylitol Appl. Biochem. Biotechnol. 2015 176 947 955
Shiyang F. et al., A Review of Lignocellulose Change During Hydrothermal Pretreatment for Bioenergy Production Curr. Org. Chem. 2016 20 2799 2809
Yi J. He T. Jiang Z. Li J. Hu C. AlCl3 catalyzed conversion of hemicellulose in corn stover Chin. J. Catal. 2013 34 2146 2152
Hoşgün E. Z. One-pot hydrothermal conversion of poppy stalks over metal chloride catalysts Biomass Convers. Biorefin. 2021 11 2703 2710
Mittal A. Pilath H. M. Johnson D. K. Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) and Furfural Energy Fuels 2020 34 3284 3293
Zhang L. Xi G. Zhang J. Yu H. Wang X. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural Bioresour. Technol. 2017 224 656 661
Roberto I. C. Mussatto S. I. Rodrigues R. C. L. B. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor Ind. Crops Prod. 2003 17 171 176
Suriyachai N. et al., Efficiency of catalytic liquid hot water pretreatment for conversion of corn stover to bioethanol ACS Omega 2020 5 29872 29881
Blumenthal L. C. et al., Systematic Identification of Solvents Optimal for the Extraction of 5-Hydroxymethylfurfural from Aqueous Reactive Solutions ACS Sustainable Chem. Eng. 2016 4 228 235
Sindermann E. C. Holbach A. Haan A. D. Kockmann N. Single stage and countercurrent extraction of 5-hydroxymethylfurfural from aqueous phase systems Chem. Eng. J. 2016 283 251 259
Lange J. P. Van Der Heide E. Van Buijtenen J. Price R. Furfural—A Promising Platform for Lignocellulosic Biofuels ChemSusChem 2012 5 150 166
Morais A. R. C. Matuchaki M. D. D. J. Andreaus J. Bogel-Lukasik R. A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst Green Chem. 2016 18 2985 2994
Morais A. R. C. Bogel-Lukasik R. Highly efficient and selective CO2 -adjunctive dehydration of xylose to furfural in aqueous media with THF Green Chem. 2016 18 2331 2334
An J. Lee G. Ha J. M. Park M. J. Process analysis for biphasic dehydration of xylose: effects of solvents on the purification of furfural Biofuels 2019 13 63 67
Carter B. Gilcrease P. C. Menkhaus T. J. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte Biotechnol. Bioeng. 2011 108 2046 2052
Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis Chem. Rev. 1999 99 2071 2083
Hallett J. P. Welton T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2 Chem. Rev. 2011 111 3508 3576
Ramli N. A. S. Amin N. A. S. Catalytic Conversion of Carbohydrate Biomass in Ionic Liquids to 5-Hydroxymethyl Furfural and Levulinic Acid: A Review BioEnergy Res. 2020 13 693 736
Forsyth S. A. Pringle J. M. MacFarlane D. R. Ionic Liquids—An Overview Aust. J. Chem. 2004 57 113 119
Song J. Fan H. Ma J. Han B. Conversion of glucose and cellulose into value-added products in water and ionic liquids Green Chem. 2013 15 2619 2635
Asim A. M. et al., Acidic ionic liquids: Promising and cost-effective solvents for processing of lignocellulosic biomass J. Mol. Liq. 2019 287 110943
Chinnappan A. Baskar C. Kim H. Biomass into chemicals: green chemical conversion of carbohydrates into 5-hydroxymethylfurfural in ionic liquids RSC Adv. 2016 6 63991 64002
Peleteiro S. da Costa Lopes A. M. Garrote G. Bogel-Łukasik R. Parajó J. C. Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent Ind. Crops Prod. 2015 77 163 166
Peleteiro S. Da Costa Lopes A. M. Garrote G. Parajó J. C. Bogel-Łukasik R. Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate Ind. Eng. Chem. Res. 2015 54 8368 8373
Carvalho A. V. Da Costa Lopes A. M. Bogel-ŁUkasik R. Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction RSC Adv. 2015 5 47153 47164
Da Costa Lopes A. M. Lins R. M. G. Rebelo R. A. Łukasik R. M. Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid Green Chem. 2018 20 4043 4057
Amarasekara A. S. Ionic Liquids in Biomass Processing Isr. J. Chem. 2019 59 789 802
Zavrel M. Bross D. Funke M. Büchs J. Spiess A. C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose Bioresour. Technol. 2009 100 2580 2587
Rajan K. Elder T. Abdoulmoumine N. Carrier D. J. Labbé N. Understanding the in situ state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals Green Chem. 2020 22 6748 6766
Flieger J. Flieger M. Ionic liquids toxicity—benefits and threats Int. J. Mol. Sci. 2020 21 1 41
Brandt A. Gräsvik J. Hallett J. P. Welton T. Deconstruction of lignocellulosic biomass with ionic liquids Green Chem. 2013 15 550 583
Halder P. et al., Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids Renewable Sustainable Energy Rev. 2019 105 268 292
Graenacher C., Cellulose solution, US Pat.1943176, 1934, available at: https://patents.google.com/patent/US1943176A/en. accessed 2nd June, 2022
Swatloski R. P. Spear S. K. Holbrey J. D. Rogers R. D. Dissolution of cellose with ionic liquids J. Am. Chem. Soc. 2002 124 4974 4975
Verma C. et al., Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review Sustainable Chem. Pharm. 2019 13 100162
Zhao Y. Liu X. Wang J. Zhang S. Effects of Cationic Structure on Cellulose Dissolution in Ionic Liquids: A Molecular Dynamics Study ChemPhysChem 2012 13 3126 3133
Zhang J. et al., NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids Phys. Chem. Chem. Phys. 2010 12 1941 1947
Liu H. Sale K. L. Holmes B. M. Simmons B. A. Singh S. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study J. Phys. Chem. B 2010 114 4293 4301
Mostofian B. Smith J. C. Cheng X. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution Cellulose 2014 21 983 997
Kilpeläinen I. et al., Dissolution of wood in ionic liquids J. Agric. Food Chem. 2007 55 9142 9148
Fort D. A. et al., Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride Green Chem. 2007 9 63 69
Xu A. Wang F. Carboxylate ionic liquid solvent systems from 2006 to 2020: thermal properties and application in cellulose processing Green Chem. 2020 22 7622 7664
Abushammala H. Mao J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids Polym 2020 12 195
Sun J. et al., One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids Green Chem. 2017 19 3152 3163
Greaves T. L. Drummond C. J. Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids Chem. Rev. 2008 108 206 237
Gschwend F. J. V. et al., Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids Green Chem. 2019 21 692 703
Gschwend F. J. V. Malaret F. Shinde S. Brandt-Talbot A. Hallett J. P. Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures Green Chem. 2018 20 3486 3498
Brandt-Talbot A. et al., An economically viable ionic liquid for the fractionation of lignocellulosic biomass Green Chem. 2017 19 3078 3102
Zhang Z. Song J. Han B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids Chem. Rev. 2017 117 6834 6880
Da Costa Lopes A. M. Bogel-Lukasik R. Acidic Ionic Liquids as Sustainable Approach of Cellulose and Lignocellulosic Biomass Conversion without Additional Catalysts ChemSusChem 2015 8 947 965
Ståhlberg T. Fu W. Woodley J. M. Riisager A. Synthesis of 5-(Hydroxymethyl)furfural in Ionic Liquids: Paving the Way to Renewable Chemicals ChemSusChem 2011 4 451 458
Lansalot-Matras C. Moreau C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids Catal. Commun. 2003 4 517 520
Chen Y. W. Lee H. V. Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose Rev. Chem. Eng. 2020 36 215 235
Zhao H. Holladay J. E. Brown H. Zhang Z. C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural Science 2007 316 1597 1600
Li H. Yang S. Saravanamurugan S. Riisager A. Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances ACS Catal. 2017 7 3010 3029
Li C. Zhang Z. Zhao Z. K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation Tetrahedron Lett. 2009 50 5403 5405
Delbecq F. Len C. Recent advances in the microwave-assisted production of hydroxymethylfurfural by hydrolysis of cellulose derivatives—A review Molecules 2018 23 8
Tabasso S. Carnaroglio D. Calcio Gaudino E. Cravotto G. Microwave, ultrasound and ball mill procedures for bio-waste valorisation Green Chem. 2015 17 684 693
Hoffmann J. Nüchter M. Ondruschka B. Wasserscheid P. Ionic liquids and their heating behaviour during microwave irradiation - a state of the art report and challenge to assessment Green Chem. 2003 5 296 299
Li C. Zhao Z. K. Cai H. Wang A. Zhang T. Microwave-promoted conversion of concentrated fructose into 5-hydroxymethylfurfural in ionic liquids in the absence of catalysts Biomass Bioenergy 2011 35 2013 2017
Qi X. Watanabe M. Aida T. M. Smith R. L. Fast Transformation of Glucose and Di-/Polysaccharides into 5-Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst System ChemSusChem 2010 3 1071 1077
Ghatta A. Al Wilton-Ely J. D. E. T. Hallett J. P. Rapid, High-Yield Fructose Dehydration to 5-Hydroxymethylfurfural in Mixtures of Water and the Noncoordinating Ionic Liquid [bmim][OTf] ChemSusChem 2019 12 4452 4460
Qi X. Watanabe M. Aida T. M. Smith R. L. Efficient Catalytic Conversion of Fructose into 5-Hydroxymethylfurfural in Ionic Liquids at Room Temperature ChemSusChem 2009 2 944 946
Chan J. Y. G. Zhang Y. Selective Conversion of Fructose to 5-Hydroxymethylfurfural Catalyzed by Tungsten Salts at Low Temperatures ChemSusChem 2009 2 731 734
Zhang J. et al., Room-Temperature Ionic Liquid System Converting Fructose into 5-Hydroxymethylfurfural in High Efficiency ACS Sustainable Chem. Eng. 2015 3 3338 3345
Shi J. Liu W. Wang N. Yang Y. Wang H. Production of 5-hydroxymethylfurfural from monoand disaccharides in the presence of ionic liquids Catal. Lett. 2014 144 252 260
Su Y. et al., Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical Appl. Catal., A 2009 361 117 122
Abou-Yousef H. Hassan E. B. Steele P. Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid J. Fuel Chem. Technol. 2013 41 214 222
Leng E. et al., The Direct Conversion of Cellulose into 5-Hydroxymethylfurfural with CrCl3 Composite Catalyst in Ionic Liquid under Mild Conditions ChemistrySelect 2019 4 181 189
Caes B. R. Palte M. J. Raines R. T. Organocatalytic conversion of cellulose into a platform chemical Chem. Sci. 2012 4 196 199
Zhang Z. Zhao Z. K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid Bioresour. Technol. 2010 101 1111 1114
Zhou J. et al., Recovery and purification of ionic liquids from solutions: a review RSC Adv. 2018 8 32832 32864
Chen Y. Mu T. Application of deep eutectic solvents in biomass pretreatment and conversion Green Energy Environ 2019 4 95 115
Morais E. S. et al., Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization Mol. 2020 25 3652
Smith E. L. Abbott A. P. Ryder K. S. Deep Eutectic Solvents (DESs) and Their Applications Chem. Rev. 2014 114 11060 11082
Kammoun M. et al., Ultrafast Lignin Extraction from Unusual Mediterranean Lignocellulosic Residues JoVE 2021 169 e61997
Hansen B. B. et al., Deep Eutectic Solvents: A Review of Fundamentals and Applications Chem. Rev. 2021 121 1232 1285
Shen X. et al., Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization Green Chem. 2019 21 275 283
Hu S. et al., Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials Green Chem. 2008 10 1280 1283
Zhang H. et al., Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kinetic study in microreactors Chem. Eng. J. 2020 391 123580
Bodachivskyi I. Kuzhiumparambil U. Williams D. B. G. Catalytic Valorization of Native Biomass in a Deep Eutectic Solvent: A Systematic Approach toward High-Yielding Reactions of Polysaccharides ACS Sustainable Chem. Eng. 2020 8 678 685
Yu Q. et al., Catalytic conversion of herbal residue carbohydrates to furanic derivatives in a deep eutectic solvent accompanied by dissolution and recrystallisation of choline chloride Cellulose 2019 26 8263 8277
Li H. Wu H. Yu Z. Zhang H. Yang S. CO2-Enabled Biomass Fractionation/Depolymerization: A Highly Versatile Pre-Step for Downstream Processing ChemSusChem 2020 13 3565 3582
Daza Serna L. V. Orrego Alzate C. E. Cardona Alzate C. A. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass Bioresour. Technol. 2016 199 113 120
Escobar E. L. N. da Silva T. A. Pirich C. L. Corazza M. L. Pereira Ramos L. Supercritical Fluids: A Promising Technique for Biomass Pretreatment and Fractionation Front. Bioeng. Biotechnol. 2020 8 252
Morais A. R. C. Da Costa Lopes A. M. Bogel-Łukasik R. Carbon dioxide in biomass processing: Contributions to the green biorefinery concept Chem. Rev. 2015 115 3 27
Zheng Y. et al., Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis Biotechnol. Lett. 1995 17 845 850
Liu Y. F. Luo P. Xu Q. Q. Wang E. J. Yin J. Z. Investigation of the effect of supercritical carbon dioxide pretreatment on reducing sugar yield of lignocellulose hydrolysis Cellul. Chem. Technol. 2014 48 89 95
Sangarunlert W. Piumsomboon P. Ngamprasertsith S. Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk Korean J. Chem. Eng. 2007 24 936 941
Park C. Lee J. Recent achievements in CO2-assisted and CO2-catalyzed biomass conversion reactions Green Chem. 2020 22 2628 2642
Miyazawa T. Funazukuri T. Polysaccharide Hydrolysis Accelerated by Adding Carbon Dioxide under Hydrothermal Conditions Biotechnol. Prog. 2005 21 1782 1785
Park C. Y. Ryu Y. W. Kim C. Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide Korean J. Chem. Eng. 2001 18 475 478
Wu S. et al., Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water Green Chem. 2010 12 1215 1219
Lin H. Xiong Q. Zhao Y. Chen J. Wang S. Conversion of carbohydrates into 5-hydroxymethylfurfural in a green reaction system of CO2-water-isopropanol AIChE J. 2017 63 257 265
Lee R. Harris J. Champagne P. Jessop P. G. CO2-Catalysed conversion of carbohydrates to 5-hydroxymethyl furfural Green Chem. 2016 18 6305 6310
Weingärtner H. Franck E. U. Weingärtner H. Franck E. U. Supercritical Water as a Solvent Angew. Chem., Int. Ed. 2005 44 2672 2692
Uematsu M. Frank E. U. Static Dielectric Constant of Water and Steam J. Phys. Chem. Ref. Data 1980 9 1291
Savage P. E. A perspective on catalysis in sub- and supercritical water J. Supercrit. Fluids 2009 47 407 414
Kruse A. Gawlik A. Biomass conversion in water at 330-410 °C and 30-50 MPa. Identification of key compounds for indicating different chemical reaction pathways Ind. Eng. Chem. Res. 2003 42 267 279
Cantero D. A. Martínez C. Bermejo M. D. Cocero M. J. Simultaneous and selective recovery of cellulose and hemicellulose fractions from wheat bran by supercritical water hydrolysis Green Chem. 2015 17 610 618
Vaquerizo L. Cocero M. J. Ultrafast heating by high efficient biomass direct mixing with supercritical water Chem. Eng. J. 2019 378 122199
Martínez C. M. Adamovic T. Cantero D. A. Cocero M. J. Scaling up the production of sugars from agricultural biomass by ultrafast hydrolysis in supercritical water J. Supercrit. Fluids 2019 143 242 250
Bicker M. Hirth J. Vogel H. Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone Green Chem. 2003 5 280 284
Bicker M. Kaiser D. Ott L. Vogel H. Dehydration of d-fructose to hydroxymethylfurfural in sub- and supercritical fluids J. Supercrit. Fluids 2005 36 118 126
Luo Y. Hu L. Tong D. Hu C. Selective dissociation and conversion of hemicellulose in Phyllostachys heterocycla cv. var. pubescens to value-added monomers via solvent-thermal methods promoted by AlCl3 RSC Adv. 2014 4 24194 24206
Procentese A. et al., Deep eutectic solvent pretreatment and subsequent saccharification of corncob Bioresour. Technol. 2015 192 31 36
Yu Q. et al., Catalytic conversion of herbal residue carbohydrates to furanic derivatives in a deep eutectic solvent accompanied by dissolution and recrystallisation of choline chloride Cellulose 2019 26 8263 8277
Poluzzi A. Guandalini G. d'Amore F. Romano M. C. The Potential of Power and Biomass-to-X Systems in the Decarbonization Challenge: a Critical Review Curr. Sustainable/Renewable Energy Rep. 2021 8 242 252
Patrizio P. Fajardy M. Bui M. Dowell N. M. CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization iScience 2021 24 102765
Kumar B. Verma P. Biomass-based biorefineries: An important architype towards a circular economy Fuel 2021 288 119622
Okolie J. A. et al., A techno-economic assessment of biomethane and bioethanol production from crude glycerol through integrated hydrothermal gasification, syngas fermentation and biomethanation Energy Convers. Manage.: X 2021 12 100131
Ruiz H. A. et al., Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept Bioresour. Technol. 2023 369 128469
Roy R. Rahman M. S. Raynie D. E. Recent advances of greener pretreatment technologies of lignocellulose Curr. Res. Green Sustainable Chem. 2020 3 100035
Cheng M. H. Wang Z. Dien B. S. Slininger P. J. W. Singh V. Economic analysis of cellulosic ethanol production from sugarcane bagasse using a sequential deacetylation, hot water and disk-refining pretreatment Processes 2019 7 642
Sganzerla W. G. Lachos-Perez D. Buller L. S. Zabot G. L. Forster-Carneiro T. Cost analysis of subcritical water pretreatment of sugarcane straw and bagasse for second-generation bioethanol production: a case study in a sugarcane mill Biofuels, Bioprod. Biorefin. 2022 16 435 450
Lan K. et al., Techno-economic analysis of producing xylo-oligosaccharides and cellulose microfibers from lignocellulosic biomass Bioresour. Technol. 2021 340 125726
Seiple T. E. Skaggs R. L. Fillmore L. Coleman A. M. Municipal wastewater sludge as a renewable, cost-effective feedstock for transportation biofuels using hydrothermal liquefaction J. Environ. Manage. 2020 270 110852
Sganzerla W. G. et al., Techno-economic assessment of subcritical water hydrolysis process for sugars production from brewer’s spent grains Ind. Crops Prod. 2021 171 113836
Zhao J. Lee J. Wang D. An integrated deep eutectic solvent-ionic liquid-metal catalyst system for lignin and 5-hydroxymethylfurfural production from lignocellulosic biomass: Technoeconomic analysis Bioresour. Technol. 2022 356 127277
Zimmermann A. W. et al., Techno-Economic Assessment Guidelines for CO2 Utilization Front. Energy Res. 2020 8 1 23
Halder P. Shah K. Techno-economic analysis of ionic liquid pre-treatment integrated pyrolysis of biomass for co-production of furfural and levoglucosenone Bioresour. Technol. 2023 371 128587