Article (Scientific journals)
Thermal impact on the excavation damage zone around a supported drift using the 2nd gradient model
Song, Hangbiao; Corman, Gilles; Collin, Frédéric
2023In Rock Mechanics and Rock Engineering
Peer Reviewed verified by ORBi
 

Files


Full Text
sn-article.pdf
Author preprint (6.59 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Numerical modelling, Thermal effects, THM couplings, strain localisation, shear bands
Abstract :
[en] The temperature increase induced by radioactive waste decay generates the thermal pressurisation around the excavation damage zone (EDZ), and the excess pore pressure could induce fracture re-opening and propagation. Shear strain localisation in band mode leading to the onset of micro/macro cracks can be always evidenced before the fracturing process from the lab experiments using advanced experimental devices, hence the thermal effects on the rock behaviour around the EDZ could be modelled with the consideration of development of shear bands. A coupled local 2nd gradient model with regularisation technique is implemented, considering the thermo-hydro-mechanical (THM) couplings in order to well reproduce the shear bands. Furthermore, the thermo-poroelasticity framework is summarized to validate the implemented model. The discrepancy of thermal dilation coefficient between solid and fluid phases is proved to be the significant parameter leading to the excess pore pressure. Finally, an application of a heating test based on Eurad Hitec benchmark exercise with a drift supported by a liner is studied. The strain localisation induced by thermal effects is properly reproduced. The plasticity and shear bands evolutions are highlighted during the heating, and the shear bands are preferential to develop in the minor horizontal principal stress direction. Different shear band patterns are obtained with changing gap values between the drift wall and the liner. A smaller gap between the wall and the liner can limit the development of shear bands.
Disciplines :
Civil engineering
Author, co-author :
Song, Hangbiao  ;  Université de Liège - ULiège > Urban and Environmental Engineering
Corman, Gilles ;  Université de Liège - ULiège > Urban and Environmental Engineering
Collin, Frédéric  ;  Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Thermal impact on the excavation damage zone around a supported drift using the 2nd gradient model
Publication date :
14 July 2023
Journal title :
Rock Mechanics and Rock Engineering
ISSN :
0723-2632
eISSN :
1434-453X
Publisher :
Springer, Germany
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 847593 - EURAD - European Joint Programme on Radioactive Waste Management
Funders :
Union Européenne [BE]
Available on ORBi :
since 18 August 2023

Statistics


Number of views
51 (9 by ULiège)
Number of downloads
46 (4 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi