Cyanobacteria; metagenomics; microbial mats; polar regions; Lakes/microbiology; Metagenome; Base Sequence; Metagenomics; Cyanobacteria/genetics; General Medicine
Abstract :
[en] Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.
Pessi, Igor S ; Department of Microbiology, University of Helsinki, Helsinki, Finland ; Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
Popin, Rafael V ; Department of Microbiology, University of Helsinki, Helsinki, Finland
Roncero-Ramos, Beatriz ; InBioS - Centre for Protein Engineering, University of Liège, Liège, Belgium ; Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
Hultman, Jenni ; Department of Microbiology, University of Helsinki, Helsinki, Finland ; Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland ; Natural Resources Institute Finland (LUKE), Helsinki, Finland
BELSPO - Belgian Federal Science Policy Office F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union Academy of Finland UH - University of Helsinki ULiège FSR - Université de Liège. Fonds spéciaux pour la recherche Junta de Andalucía
Funding number :
(Award CR.CH.10-11-1.5139.11); (Award 2.4570.09); Award PORTAL – B2/212/P1/PORTAL; Award CCAMBIO – SD/BA/03A); Award AMBIO – SD/BA/01A; FRS-FNRS - grant 2.4570.09; FRS-FNRS - CR.CH.10-11-1.5139.11; Academy of Finland grant 1314114; Junta de Andalucía PAIDI-DOCTOR 21_00571
Funding text :
Funding information
This work was supported by the Belgian Federal Science Policy Office (BELSPO) (projects AMBIO – SD/BA/01A, CCAMBIO – SD/BA/03A and PORTAL– B2/212 /P1/PORTAL), the Belgian National Fund for Scientific Research (FRS-FNRS) (grants 2.4570.09 and CR.CH.10-11-1.5139.11), and the EU- Interact project MiBiPol. I.S.P. and J.H. were supported by the Academy of Finland grant 1314114, R.V.P. by the Doctoral Programme in Microbiology
and Biotechnology (University of Helsinki), B.D. and V.S. by the FRS-FNRS, B.R.R. by the Special Funds for Research (University of Liège), the IPD-STEMA Programme, and the Junta de Andalucía (PAIDI-DOCTOR 21_00571), and A.W. is Senior Research Associate of the FRS-FNRS. Open access was funded by the Helsinki University Library.
Acknowledgments
The authors would like to acknowledge Sofie D’Hondt (UGent) for help with DNA extraction and library preparation, the IT Centre for Science – CSC (Finland) for providing the computational resources used in the study, and Kaarina Sivonen, Daniel Bolnick, Danillo Alvarenga and Tânia Shishido for comments. We also thank Dominic A. Hodgson, Steve J. Roberts, Wim Van Nieuwenhuyze, Koen Sabbe, Dagmar Obbels, Otakar Strunecký, Kate
Kopalová, Jan Kavan, Josef Elster, Pieter Vanormelingen and Eveline Pinseel for help during sampling campaigns or/and sharing samples. Author contributions:
I.S.P., Y.L., B.T., E.V. and A.W. conceived the experiments. I.S.P. performed most of the analysis, and R.V.P., V.S. and B.R.R. contributed with minor parts. I.S.P. and R.V.P. wrote the manuscript. All authors provided important feedback, helped shape the study and contributed to the writing of the manuscript.
Pessi I. Polar cyanobacteria MAGs. figshare. Figshare; 2023. https://doi.org/10.6084/m9.figshare.22003967.v1
Riding R. Calcareous algae and Stromatolites. In: Riding R (eds). Modern Stromatolites: A Review. Berlin, Heidelberg: Springer; 1991. pp. 541–561.
Stal LJ. Cyanobacterial mats and stromatolites. In: Whitton BA (eds). Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands;. pp. 65–125.
Bolhuis H, Cretoiu MS, Stal LJ. Molecular ecology of microbial mats. FEMS Microbiol Ecol 2014;90:335–350.
Singh SM, Elster J. Cyanobacteria in Antarctic lake environments: a mini-review. In: Seckbach J (eds). Algae and Cyanobacteria in Extreme Environments. Dordrecht: Springer Netherlands;. pp. 303–320.
Vincent WF, Quesada A. Cyanobacteria in high latitude lakes, rivers and seas. In: Whitton BA (eds). Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands;. pp. 371–385.
Quesada A, Vincent WF. Cyanobacteria in the cryosphere: snow, ice and extreme cold. In: Whitton BA (eds). Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands;. pp. 387–399.
Van Goethem MW, Cowan DA. Role of Cyanobacteria in the ecology of polar environments. In: Castro-Sowinski S (eds). The Ecological Role of Micro-Organisms in the Antarctic Environment. Cham: Springer International Publishing. pp. 3–23.
Chrismas NAM, Anesio AM, Sanchez-Baracaldo P. The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 2018;94:fiy032.
Vincent WF, Downes MT, Castenholz RW, Howard-Williams C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 1993;28:213–221.
Elster J, Komarek O. Ecology of periphyton in a meltwater stream ecosystem in the maritime Antarctic. Antartic science 2003;15:189–201.
Elster J, Lukesova A, Svoboda J, Kopecky J, Kanda H. Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Record 1999;35:231–254.
Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, et al. Polyphasic study of Antarctic cyanobacterial strains. J Phycol 2006;42:1257–1270.
Palinska KA, Schneider T, Surosz W. Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard. Polar Biol 2017;40:1607–1616.
Strunecky O, Raabova L, Bernardova A, Ivanova AP, Semanova A, et al. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS Microbiol Ecol 2020;96:fiz189.
Taton A, Hoffmann L, Wilmotte A. Cyanobacteria in microbial mats of Antarctic lakes (East Antarctica) a microscopical approach. Algol Stud 2008;126:173–208.
Namsaraev Z, Mano M-J, Fernandez R, Wilmotte A. Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Ann Glaciol 2010;51:171–177.
Pushkareva E, Pessi IS, Wilmotte A, Elster J. Cyanobacterial community composition in Arctic soil crusts at different stages of development. FEMS Microbiol Ecol 2015;91:fiv143.
Pushkareva E, Pessi IS, Namsaraev Z, Mano M-J, Elster J, et al. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sor Rondane Mountains, Antarctica. Syst Appl Microbiol 2018;41:363–373.
Pessi IS, Maalouf PDC, Laughinghouse HD, Baurain D, Wilmotte A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. J Phycol 2016;52:356–368.
Pessi IS, Lara Y, Durieu B, Maalouf P de C, Verleyen E, et al. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiol Ecol 2018;94.
Pessi IS, Pushkareva E, Lara Y, Borderie F, Wilmotte A, et al. Marked succession of cyanobacterial communities following glacier retreat in the high Arctic. Microb Ecol 2019;77:136–147.
Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003;69:5157–5169.
Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, et al. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 2006;57:272–289.
Fernandez-Carazo R, Hodgson DA, Convey P, Wilmotte A. Low cyanobacterial diversity in biotopes of the Transantarctic mountains and Shackleton range (80-82° S), Antarctica. FEMS Microbiol Ecol 2011;77:503–517.
Wilmotte A, Golubić S. Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algol Stud 1991;64:1–24.
Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 2013;110:1053–1058.
Mareš J. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia 2018;811:19–34.
Chrismas NAM, Barker G, Anesio AM, Sanchez-Baracaldo P. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 2016;17:533.
Péquin B, Tremblay J, Maynard C, Wasserscheid J, Greer CW. Draft whole-genome sequences of the polar Cyanobacterium Leptolyngbya sp. strain Cla-17 and its associated flavobacterium. Microbiol Resour Announc 2022;11:e0005922.
Lara Y, Durieu B, Cornet L, Verlaine O, Rippka R, et al. Draft genome sequence of the Axenic strain Phormidesmispriestleyi ULC007, a Cyanobacterium isolated from Lake Bruehwiler (Larsemann Hills, Antarctica). Genome Announc 2017;5:e01546-16.
Chrismas NAM, Williamson CJ, Yallop ML, Anesio AM, Sanchez-Baracaldo P. Photoecology of the Antarctic cyanobacterium Leptolyngbya sp. BC1307 brought to light through community analysis, comparative genomics and in vitro photophysiology. Mol Ecol 2018;27:5279–5293.
Tang J, Du L-M, Liang Y-M, Daroch M. Complete genome sequence and comparative Analysis of Synechococcus sp. CS-601 (SynAce01), a cold-adapted Cyanobacterium from an oligotrophic Antarctic habitat. Int J Mol Sci 2019;20:152.
Effendi DB, Sakamoto T, Ohtani S, Awai K, Kanesaki Y. Possible involvement of extracellular polymeric substrates of Antarctic cyanobacterium Nostoc sp. strain SO-36 in adaptation to harsh environments. J Plant Res 2022;135:771–784.
Cornet L, Bertrand AR, Hanikenne M, Javaux EJ, Wilmotte A, et al. Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures. Microbial Genomics 2018;4:212.
Delmont TO. Discovery of nondiazotrophic Trichodesmium species abundant and widespread in the open ocean. Proc Natl Acad Sci 2021;118:e2112355118.
Pessi IS, Viitamaki S, Virkkala A-M, Eronen-Rasimus E, Delmont TO, et al. In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environ Microbiome 2022;17:30.
Pessi IS, Rutanen A, Hultman J. Candidatus Nitrosopolaris, a genus of putative ammonia-oxidizing archaea with a polar/ alpine distribution. FEMS Microbes 2022;3.
Grettenberger CL. Novel Gloeobacterales spp. from diverse environments across the globe. mSphere 2021;6:e0006121.
Grettenberger CL, Sumner DY, Wall K, Brown CT, Eisen JA, et al. A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME J 2020;14:2142–2152.
Lumian JE, Jungblut AD, Dillion ML, Hawes I, Doran PT, et al. Metabolic capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi that sustains oxygenic photosynthesis in the presence of hydrogen sulfide. Genes 2021;12:426.
Terauds A, Lee JR, Heikkinen R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Diversity Distrib 2016;22:836–840.
Verleyen E, Sabbe K, Hodgson D, Grubisic S, Taton A, et al. Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat Microb Ecol 2010;59:11–24.
Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, et al. Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biol 2004;49:296–319.
Hodgson D, Vyverman W, Verleyen E, Sabbe K, Leavitt P, et al. Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 2004;37:247–263.
Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016;32:3047–3048.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j 2011;17:10.
Bengtsson-Palme J, Hartmann M, Eriksson KM, Pal C, Thorell K, et al. METAXA2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data. Mol Ecol Resour 2015;15:1403–1414.
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. Introducing mothur: open-source, platform-independent, community-supported Software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537–7541.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D596.
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261–5267.
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–1676.
Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021;6:3–6.
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119.
Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019;35:4162–4164.
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59–60.
Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022;50:D785–D794.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–2079.
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020;36:1925–1927.
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9:5114.
Konstantinidis KT, Rossello-Mora R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017;11:2399–2406.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–274.
Komarek J, Kaštovsky J, Mareš J, Johansen JR. Taxonomic classification of Cyanoprokaryotes (Cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014;86:295–335.
Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020;36:2251–2252.
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. Pfam: the protein families database in 2021. Nucleic Acids Res 2021;49:D412–D419.
Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 2021;49:D274–D281.
Pearson WR. An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinforma 2013;42:3.
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 2017;11:2864–2868.
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016;32:2103–2110.
Lumian J, Sumner D, Grettenberger C, Jungblut AD, Irber L, et al. Biogeographic distribution of five Antarctic Cyanobacteria using large-scale k-mer searching with sourmash branchwater. BioRxiv. DOI: 10.1101/2022.10.27.514113
Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, et al. IMNGS: a comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016;6:33721.
Zaikova E, Goerlitz DS, Tighe SW, Wagner NY, Bai Y, et al. Antarctic relic microbial mat community revealed by metagenomics and metatranscriptomics. Front Ecol Evol 2019;7:1.
Slattery M, Lesser MP. Allelopathy-mediated competition in microbial mats from Antarctic lakes. FEMS Microbiol Ecol 2017;93.
Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol 2012;78:549–559.
Chen L-X, Anantharaman K, Shaiber A, Eren AM, Banfield JF. Accurate and complete genomes from metagenomes. Genome Res 2020;30:315–333.
Soo RM, Skennerton CT, Sekiguchi Y, Imelfort M, Paech SJ, et al. An expanded genomic representation of the phylum cyanobacteria. Genome Biol Evol 2014;6:1031–1045.
Komárek J, Genuario DB, Fiore MF, Elster J. Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biol 2015;38:475–492.
Chrismas NAM, Anesio AM, Sanchez-Baracaldo P. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 2015;6:1070.
Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 2010;4:191–202.
Velichko N, Smirnova S, Averina S, Pinevich A. A survey of Antarctic cyanobacteria. Hydrobiologia 2021;848:2627–2652.
Davydov D. Cyanobacterial diversity of Svalbard Archipelago. Polar Biol 2021;44:1967–1978.
Olson JB, Steppe TF, Litaker RW, Paerl HW. N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 1998;36:231–238.
Su H-N, Wang Q-M, Li C-Y, Li K, Luo W, et al. Structural insights into the cold adaptation of the photosynthetic pigment-protein C-phycocyanin from an Arctic cyanobacterium. Biochim Biophys Acta BBA Bioenerg 2017;1858:325–335.
Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, et al. An expanded ribosomal phylogeny of Cyanobacteria supports a deep placement of plastids. Front Microbiol 2019;10:1612.
Ishida T, Yokota A, Sugiyama J. Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rRNA sequence divergence. J Gen Appl Microbiol 1997;43:237–241.
Honda D, Yokota A, Sugiyama J. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 1999;48:723–739.
Ishida T, Watanabe MM, Sugiyama J, Yokota A. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 2001;201:79–82.
Chen M-Y, Teng W-K, Zhao L, Hu C-X, Zhou Y-K, et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J 2021;15:211–227.
de Winder B, Stal LJ, Mur LR. Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly- -(1,4) glucar (cellulose). J Gen Microbiol 1990;136:1645–1653.
Bohunicka M, Mareš J, Hrouzek P, Urajova P, Lukeš M, et al. A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (Oscillatoriales) reveals a new cylindrospermopsin-producing clade of cyanobacteria. J Phycol 2015;51:1040–1054.
Broady PA, Kibblewhite AL. Morphological characterization of Oscillatoriales (Cyanobacteria) from Ross Island and Southern Victoria Land, Antarctica. Antartic science 1991;3:35–45.
Komarek J. Phenotypic and ecological diversity of freshwater coccoid cyanobacteria from maritime Antarctica and Islands of NW Weddell Sea. II. Czech Polar Rep 2014;4:17–39.
Demoulin CF, Lara YJ, Cornet L, Francois C, Baurain D, et al. Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 2019;140:206–223.
Seo P-S, Yokota A. The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 2003;49:191–203.
Gupta RS, Mathews DW. Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 2010;10:24.
Raven JA, Sanchez-Baracaldo P. Gloeobacter and the implications of a freshwater origin of Cyanobacteria. Phycologia 2021;60:402–418.
Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022;7:1702–1708.
Rippka R, Waterbury J, Cohen-Bazire G. A cyanobacterium which lacks thylakoids. Arch Microbiol 1974;100:419–436.
Guglielmi G, Cohen-Bazire G, Bryant DA. The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 1981;129:181–189.
Bryant DA, Cohen-Bazire G, Glazer AN. Characterization of the biliproteins of Gloeobacter violaceus. Arch Microbiol 1981;129:190–198.
Rahmatpour N, Hauser DA, Nelson JM, Chen PY, Villarreal A JC, et al. A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Curr Biol 2021;31:2857–2867.
Nakamura Y. Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Research 2003;10:137–145.
Saw JH, Cardona T, Montejano G. Complete genome sequencing of a novel Gloeobacter species from a waterfall cave in Mexico. Genome Biol Evol 2021;13:evab264.
Saw JHW, Schatz M, Brown MV, Kunkel DD, Foster JS, et al. Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a lava cave in Kīlauea Caldera, Hawai’i. PLoS One 2013;8:e76376.
Matheus Carnevali PB, Herbold CW, Hand KP, Priscu JC, Murray AE. Distinct microbial assemblage structure and archaeal diversity in sediments of Arctic Thermokarst Lakes differing in methane sources. Front Microbiol 2018;9:1192.
Graham RW, Belmecheri S, Choy K, Culleton BJ, Davies LJ, et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc Natl Acad Sci 2016;113:9310–9314.
Bolnick DI, Snowberg LK, Caporaso JG, Lauber C, Knight R, et al. Major histocompatibility complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol 2014;23:4831–4845.
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 2014;17:979–987.
Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat Commun 2014;5:4500.
Delwiche CF. Microbial biodiversity: a newly isolated cyanobacterium sheds light on the evolution of photosynthesis. Curr Biol 2021;31:R843–R845.
Mareš J, Hrouzek P, Kaňa R, Ventura S, Strunecky O, et al. The primitive thylakoid-less cyanobacterium Gloeobacter is a common rock-dwelling organism. PLoS One 2013;8:e66323.
Golubic S, Campbell SE. Analogous microbial forms in recent subaerial habitats and in Precambrian cherts: Gloethece coerulea eitler and Eosynechococcus moorei Hofmann. Precambrian Res 1979;8:201–217.
Williams L, Loewen-Schneider K, Maier S, Budel B, Baldrian P. Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient. FEMS Microbiol Ecol 2016;92:fiw157.
Lionard M, Pequin B, Lovejoy C, Vincent WF. Benthic cyanobacterial mats in the igh Arctic: multi-layer structure and fluorescence responses to osmotic stress. Front Microbio 2012;3:140.
Nakai R, Abe T, Baba T, Imura S, Kagoshima H, et al. Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol 2012;35:425–433.
Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep 2015;5:14835.
Gao Q, Garcia-Pichel F. Microbial ultraviolet sunscreens. Nat Rev Microbiol 2011;9:791–802.
Sinetova MA, Los DA. Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. Mol Biosyst 2016;12:3254–3258.
Gao X, Zhu Z, Xu H, Liu L, An J, et al. Cold adaptation in drylands: transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance. Environ Microbiol 2021;23:713–727.
Kim CY, Ma J, Lee I. HiFi metagenomic sequencing enables assembly of accurate and complete genomes from human gut microbiota. Nat Commun 2022;13:6367.
Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sorensen EA, et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods 2022;19:823–826.