Cosmic Explorer; Einstein Telescope; ETpathfinder; gravitational-wave detectors; third generation of gravitational-wave detectors; Voyager; Physics and Astronomy (miscellaneous)
Abstract :
[en] The third-generation (3G) of gravitational wave observatories, such as the Einstein Telescope (ET) and Cosmic Explorer, aim for an improvement in sensitivity of at least a factor of ten over a wide frequency range compared to the current advanced detectors. In order to inform the design of the 3G detectors and to develop and qualify their subsystems, dedicated test facilities are required. ETpathfinder prototype uses full interferometer configurations and aims to provide a high sensitivity facility in a similar environment as ET. Along with the interferometry at 1550 nm and silicon test masses, ETpathfinder will focus on cryogenic technologies, lasers and optics at 2090 nm and advanced quantum-noise reduction schemes. This paper analyses the underpinning noise contributions and combines them into full noise budgets of the two initially targeted configurations: (1) operating with 1550 nm laser light and at a temperature of 18 K and (2) operating at 2090 nm wavelength and a temperature of 123 K.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Utina, A. ; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Amato, A.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Arends, J.; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Arina, C.; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium
de Baar, M.; Eindhoven University of Technology, Eindhoven, Netherlands
Baars, M.; Nikhef, Amsterdam, Netherlands
Baer, P. ; Fraunhofer ILT-Institute for Laser Technology, Aachen, Germany
Biersteker, S.; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Binetti, A.; Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
ter Brake, H.J.M.; University of Twente, Enschede, Netherlands
Bruno, G.; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium
Bryant, J.; School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, United Kingdom
Bulten, H.J.; Nikhef, Amsterdam, Netherlands
Busch, L.; Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Cebeci, P.; Fraunhofer ILT-Institute for Laser Technology, Aachen, Germany
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace structures and advanced mechanical systems
Cooper, S.; School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, United Kingdom
Cornelissen, R.; Nikhef, Amsterdam, Netherlands
Cuijpers, P.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands
van Dael, M.; Eindhoven University of Technology, Eindhoven, Netherlands
Danilishin, S.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Diksha, D.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
van Doesburg, S.; Nikhef, Amsterdam, Netherlands
Doets, M.; Nikhef, Amsterdam, Netherlands
Elsinga, R.; Nikhef, Amsterdam, Netherlands ; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Erends, V.; Nikhef, Amsterdam, Netherlands
van Erps, J.; Faculty of Engineering, Dept. of Applied Physics and Photonics (TONA), Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and FlandersMake, Brussels, Belgium
Freise, A.; Nikhef, Amsterdam, Netherlands ; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Frenaij, H.; Nikhef, Amsterdam, Netherlands
Garcia, R.; Facultat Ciencies Nord, The Institute for High Energy Physics of Barcelona (IFAE), ICREA, Campus UAB, Barcelona, Spain
Giesberts, M.; Fraunhofer ILT-Institute for Laser Technology, Aachen, Germany
Grohmann, S.; Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Van Haevermaet, H.; Universiteit Antwerpen, Antwerpen, Belgium
Heijnen, S.; Nikhef, Amsterdam, Netherlands
van Heijningen, J.V.; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium
Hennes, E.; Nikhef, Amsterdam, Netherlands
Hennig, J.-S.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Hennig, M.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Hertog, T.; Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Hild, S.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Hoffmann, H.-D.; Fraunhofer ILT-Institute for Laser Technology, Aachen, Germany
Hoft, G.; Nikhef, Amsterdam, Netherlands
Hopman, M.; Nikhef, Amsterdam, Netherlands
Hoyland, D.; School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, United Kingdom
Iandolo, G.A.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Ietswaard, C.; Nikhef, Amsterdam, Netherlands
Jamshidi, Rasa ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace structures and advanced mechanical systems
Jansweijer, P.; Nikhef, Amsterdam, Netherlands
Jones, A.; OzGrav, University of Western Australia, Crawley, Australia
Jones, P.; School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, United Kingdom
Knust, N.; Max Planck Institute for Gravitational Physics (AEI), Hannover, Germany
Koekoek, G.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Koroveshi, X.; Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Kortekaas, T.; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Kranzhoff, S.L.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Limburg, R.; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Linde, F.; Nikhef, Amsterdam, Netherlands
Locquet, J.-P.; Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Loosen, P.; Fraunhofer ILT-Institute for Laser Technology, Aachen, Germany
Lueck, H.; Max Planck Institute for Gravitational Physics (AEI), Hannover, Germany
Martínez, M.; Facultat Ciencies Nord, The Institute for High Energy Physics of Barcelona (IFAE), ICREA, Campus UAB, Barcelona, Spain
Masserot, A.; Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Meylahn, F.; Max Planck Institute for Gravitational Physics (AEI), Hannover, Germany
Molenaar, M.; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Mow-Lowry, C.; Nikhef, Amsterdam, Netherlands ; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Mundet, J.; Facultat Ciencies Nord, The Institute for High Energy Physics of Barcelona (IFAE), ICREA, Campus UAB, Barcelona, Spain
Munneke, B.; Nikhef, Amsterdam, Netherlands
van Nieuwland, L.; Nikhef, Amsterdam, Netherlands
Pacaud, E.; Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Pascucci, D.; Department of Physics and Astronomy, Ghent: Universiteit Gent, Gent, Belgium
Petit, S.; Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Van Ranst, Z.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Raskin, G.; Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Recaman, P.M.; Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
van Remortel, N.; Universiteit Antwerpen, Antwerpen, Belgium
Rolland, L.; Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IN2P3, Annecy, France
Rosier, J.C.; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
Ryckbosch, D.; Department of Physics and Astronomy, Ghent: Universiteit Gent, Gent, Belgium
Schouteden, K.; Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Sevrin, A.; Universiteit Antwerpen, Antwerpen, Belgium ; Theoretische Natuurkunde, Vrije Universiteit Brussel, The International Solvay Institutes, Brussels, Belgium
Sider, Ameer ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Singha, A.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Spagnuolo, V.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Steinlechner, J.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Steinlechner, S.; Department of Gravitational Waves and Fundamental Physics, Maastricht University, Maastricht, Netherlands ; Nikhef, Amsterdam, Netherlands
Swinkels, B.; Nikhef, Amsterdam, Netherlands
Szilasi, N.; Centre for Cosmology, Particle Physics and Phenomenology (CP3), UCLouvain, Louvain-la-Neuve, Belgium
Tacca, M.; Nikhef, Amsterdam, Netherlands
Thienpont, H.; Faculty of Engineering, Dept. of Applied Physics and Photonics (TONA), Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and FlandersMake, Brussels, Belgium
Vecchio, A.; School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, United Kingdom
Verkooijen, H.; Nikhef, Amsterdam, Netherlands
Vermeer, C.H.; University of Twente, Enschede, Netherlands
Vervaeke, M.; Faculty of Engineering, Dept. of Applied Physics and Photonics (TONA), Brussels Photonics (B-PHOT), Vrije Universiteit Brussel and FlandersMake, Brussels, Belgium
Visser, G.; Nikhef, Amsterdam, Netherlands
Walet, R.; Nikhef, Amsterdam, Netherlands ; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, VU Amsterdam, Amsterdam, Netherlands
ETpathfinder is a cryogenic research and development laboratory with team members from twenty research institutions and is funded by a consortium of financial partners 21
Acernese F 2014 Class. Quantum Grav. 32 024001 10.1088/0264-9381/32/2/024001
Abbott R 2021 GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run (arXiv: 2111.03606)
Abbott R LIGO Scientific Collaboration and Virgo Collaboration 2020 Phys. Rev. Lett. 125 101102 10.1103/PhysRevLett.125.101102
Abbott B P LIGO Scientific Collaboration and Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101 10.1103/PhysRevLett.119.161101
Abbott B P 2017 Nature 551 85 88 85-8 10.1038/nature24471
Mooley K P 2018 Nature 561 355 359 355-9 10.1038/s41586-018-0486-3
Pian E 2017 Nature 551 67 70 67-70 10.1038/nature24298
Punturo M 2010 Class. Quantum Grav. 27 194002 10.1088/0264-9381/27/19/194002
Reitze D 2019 Bull. Am. Astron. Soc. 51 https://baas.aas.org/pub/2020n7i035
Regimbau T 2012 Phys. Rev. D 86 122001 10.1103/physrevd.86.122001
Regimbau T Meacher D Coughlin M 2014 Phys. Rev. D 89 084046 10.1103/physrevd.89.084046
Kalogera V 2021 The next generation global gravitational wave observatory: the science book (arXiv: 2111.06990)
Hall E D Evans M 2019 Class. Quantum Grav. 36 225002 10.1088/1361-6382/ab41d6
Hild S Chelkowski S Freise A Franc J Morgado N Flaminio R DeSalvo R 2009 Class. Quantum Grav. 27 015003 10.1088/0264-9381/27/1/015003
Hild S 2011 Class. Quantum Grav. 28 094013 10.1088/0264-9381/28/9/094013
Callen H B Welton T A 1951 Phys. Rev. 83 34 40 34-40 10.1103/physrev.83.34
Travasso F Amico P Bosi L Cottone F Dari A Gammaitoni L Vocca H Marchesoni F 2007 Europhys. Lett. 80 50008 10.1209/0295-5075/80/50008
McGuigan D Lam C C Gram R Q Hoffman A W Douglass D H Gutche H W 1978 J. Low Temp. Phys. 30 621 629 621-9 10.1007/bf00116202
Schnabel R 2010 J. Phys.: Conf. Ser. 228 012029 10.1088/1742-6596/228/1/012029
Degallaix J Flaminio R Forest D Granata M Michel C Pinard L Bertrand T Cagnoli G 2013 Opt. Lett. 38 2047 2049 2047-9 10.1364/ol.38.002047
Mehmet M Ast S Eberle T Steinlechner S Vahlbruch H Schnabel R 2011 Opt. Express 19 25763 25772 25763-72 10.1364/oe.19.025763
Steinlechner J Martin I W Bell A S Hough J Fletcher M Murray P G Robie R Rowan S Schnabel R 2018 Phys. Rev. Lett. 120 263602 10.1103/physrevlett.120.263602
Adhikari R X 2020 Class. Quantum Grav. 37 165003 10.1088/1361-6382/ab9143
Abe H 2022 Galaxies 10 63 10.3390/galaxies10030063
Akutsu T 2020 Overview of KAGRA: detector design and construction history (arXiv: 2005. 05574)
Meylahn F Knust N Willke B 2022 Phys. Rev. D 105 122004 10.1103/physrevd.105.122004
Strain K Jones R 2020 HAM relay-optics suspension: pre-conceptual design (LIGO-T1900036-v5) The University of Glasgow
Caves C M 1981 Phys. Rev. D 23 1693 1708 1693-708 10.1103/physrevd.23.1693
Braginskiǐ V B 1968 Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator Sov. Phys. - JETP 26 831
Danilishin S L Khalili F Y 2012 Living Rev. Relativ. 15 5 10.12942/lrr-2012-5
Harry G M 2002 Class. Quantum Grav. 19 897 917 897-917 10.1088/0264-9381/19/5/305
Hong T Yang H Gustafson E K Adhikari R X Chen Y 2013 Phys. Rev. D 87 082001 10.1103/physrevd.87.082001
Cagnoli G 2017 Advanced optical coatings for the discovery of gravitational waves Laboratoire des Matériaux Avancés (LMA) https://spie.org/news/6767-advanced-optical-coatings-for-the- discovery-of-gravitational-waves?SSO=1
Granata M 2016 Phys. Rev. D 93 012007 10.1103/PhysRevD.93.012007
Flaminio R Franc J Michel C Morgado N Pinard L Sassolas B 2010 Class. Quantum Grav. 27 084030 10.1088/0264-9381/27/8/084030
Liu X White, Jr. B E Pohl R O Iwanizcko E Jones K M Mahan A H Nelson B N Crandall R S Veprek S 1997 Phys. Rev. Lett. 78 4418 4421 4418-21 10.1103/physrevlett.78.4418
Birney R 2018 Phys. Rev. Lett. 121 191101 10.1103/physrevlett.121.191101
Steinlechner J Martin I W Bell A S Hough J Fletcher M Murray P G Robie R Rowan S Schnabel R 2018 Phys. Rev. Lett. 120 263602 10.1103/physrevlett.120.263602
Steinlechner J 2016 Phys. Rev. D 93 062005 10.1103/PhysRevD.93.062005
Pan H W 2018 Phys. Rev. D 98 102001 10.1103/PhysRevD.98.102001
Liu X Metcalf T H Wang Q Photiadis D M 2007 MRS Online Proc. Libr. 989 2201 10.1557/proc-0989-a22-01
Steinlechner J 2017 Phys. Rev. D 96 022007 10.1103/physrevd.96.022007
Steinlechner J 2015 Phys. Rev. D 91 042001 10.1103/physrevd.91.042001
Yam W Gras S Evans M 2015 Phys. Rev. D 91 042002 10.1103/physrevd.91.042002
Tait S C 2020 Phys. Rev. Lett. 125 011102 10.1103/PhysRevLett.125.011102
Cole G D 2016 Optica 3 647 656 647-56 10.1364/optica.3.000647
Braginsky V Vyatchanin S 2004 Phys. Lett. A 324 345 360 345-60 10.1016/j.physleta.2004.02.066
Braginsky V Gorodetsky M Vyatchanin S 1999 Phys. Lett. A 264 1 10 1-10 10.1016/S0375-9601(99)00785-9
Cerdonio M Conti L Heidmann A Pinard M 2001 Phys. Rev. D 63 082003 10.1103/physrevd.63.082003
Levin Y 1998 Phys. Rev. D 57 659 663 659-63 10.1103/physrevd.57.659
Bondu F Hello P Vinet J Y 1998 Phys. Lett. A 246 227 236 227-36 10.1016/s0375-9601(98)00450-2
Liu Y T Thorne K S 2000 Phys. Rev. D 62 122002 10.1103/physrevd.62.122002
Rollins J G Hall E Wipf C McCuller L 2020 pygwinc: gravitational wave interferometer noise calculator Astrophysics Source Code Library Record ascl:2007.020 https://ascl.net/2007.020
Komma J Schwarz C Hofmann G Heinert D Nawrodt R 2012 Appl. Phys. Lett. 101 041905 10.1063/1.4738989
Weiss R 1972 Electromagnetically coupled broadband gravitational antenna MIT MIT: Research Laboratory of Electronics http://dspace.mit.edu/bitstream/handle/1721.1/56271/RLE_gQPR_ g105_gV.pdf?sequence=1
Peterson J 1993 Observations and Modeling of Seismic Background Noise Albuquerque Seismological Laboratory 10.3133/ofr93322 U.S. Geological Survey https://doi.org/10.3133/ofr93322
The ETpathfinder Team 2020 ETpathfinder Design Report (ET-0011A-20) Maastricht University, Nikhef and the ETpathfinder partners https://etpathfinder.eu/wp-content/uploads/2020/03/ETpathfinder-Design-Report.pdf
Accadia T 2011 J. Low Freq. Noise Vib. Act. Control 30 63 79 63-79 10.1260/0263-0923.30.1.63
Saulson P R 1984 Phys. Rev. D 30 732 736 732-6 10.1103/physrevd.30.732
Harms J 2019 Living Rev. Relativ. 22 10.1007/s41114-019-0022-2
Hughes S A Thorne K S 1998 Phys. Rev. D 58 122002 10.1103/physrevd.58.122002
Beccaria M Bernardini M Braccini S Bradaschia C Bozzi A 1998 Class. Quantum Grav. 15 3339 3362 3339-62 10.1088/0264-9381/15/11/004
González G I Saulson P R 1995 Phys. Lett. A 201 12 18 12-8 10.1016/0375-9601(95)00194-8
Birney R 2017 Class. Quantum Grav. 34 235012 10.1088/1361-6382/aa9354
Weiss R 1989 MIT Scattering by residual gas https://dcc.ligo.org/public/0028/T890025/001/T890025-01.pdf
Zucker M E Whitcomb S E 1994 Measurement of optical path fluctuations due to residual gas in the LIGO 40-meter interferometer (LIGO-P940008-x0) LIGO Project, MIT https://dcc-llo.ligo. org/public/0073/P940008/000/P940008-00.pdf
Cavalleri A Ciani G Dolesi R Hueller M Nicolodi D Tombolato D Vitale S Wass P J Weber W J 2010 Phys. Lett. A 374 3365 3369 3365-9 10.1016/j.physleta.2010.06.041
Dolesi R 2011 Phys. Rev. D 84 063007 10.1103/PhysRevD.84.063007