[en] Glomerular hyperfiltration (GHF) is a phenomenon that can occur in various clinical conditions affecting the kidneys such as sickle cell disease, diabetes mellitus, autosomal dominant polycystic kidney disease, and solitary functioning kidney. Yet, the pathophysiological mechanisms vary from one disease to another and are not well understood. More so, it has been demonstrated that GHF may occur at the single-nephron in some clinical conditions while in others at the whole-kidney level. In this review, we explore the pathophysiological mechanisms of GHF in relation to various clinical conditions in the pediatric population. In addition, we discuss the role and mechanism of action of important factors such as gender, low birth weight, and race in the pathogenesis of GHF. Finally, in this current review, we further highlight the consequences of GHF in the progression of kidney disease.
Disciplines :
Urologie & néphrologie
Auteur, co-auteur :
Adebayo, Oyindamola C ; Center of Vascular and Molecular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium ; Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium
Nkoy, Agathe B ; Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium ; Division of Nephrology, Department of Pediatrics, Faculty of Medicine, University Hospital of Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
van den Heuvel, Lambertus P ; Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium ; Department of Pediatric Nephrology, Radboud University Medical Centre, 6500 Nijmegen, The Netherlands
Labarque, Veerle ; Center of Vascular and Molecular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium ; Department of Pediatric Hematology, University Hospitals Leuven, 3000 Leuven, Belgium
Levtchenko, Elena ; Laboratory of Pediatric Nephrology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Campus Gasthiusberg, 3000 Leuven, Belgium ; Department of Pediatric Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
Delanaye, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > > Service de néphrologie ; Department of Nephrology-Dialysis-Apheresis, Hôpital Universitaire Carémeau, Nîmes, France
Pottel, Hans ; Université de Liège - ULiège > Département des sciences cliniques ; Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Campus Kulak, 8500 Kortrijk, Belgium. hans.pottel@kuleuven.be
Langue du document :
Anglais
Titre :
Glomerular hyperfiltration: part 2-clinical significance in children.
Date de publication/diffusion :
août 2023
Titre du périodique :
Pediatric Nephrology
ISSN :
0931-041X
eISSN :
1432-198X
Maison d'édition :
Springer Science and Business Media Deutschland GmbH, Allemagne
FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen VLIR-UOS - Flemish Interuniversity Council. Bureau UOS DGD - Direction générale Coopération au Développement et Aide humanitaire
Subventionnement (détails) :
O.C.A. is supported by the fundamental research grant of Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO) [grant number 11A5621N]. A.B.N is supported by the Global Minds Scholarship of VLIR-UOS and DGD (Belgium partner in development).
Tummalapalli SL, Shlipak MG (2019) Hyperfiltration: much ado about nothing? Clin J Am Soc Nephrol 14:789–791 DOI: 10.2215/CJN.05330419
Oh SW, Yang JH, Kim MG, Cho WY, Jo SK (2020) Renal hyperfiltration as a risk factor for chronic kidney disease: a health checkup cohort study. PLoS One 15:e0238177 DOI: 10.1371/journal.pone.0238177
Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H (2015) A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol 10:382–389 DOI: 10.2215/CJN.03080314
Park M, Yoon E, Lim YH, Kim H, Choi J, Yoon HJ (2015) Renal hyperfiltration as a novel marker of all-cause mortality. J Am Soc Nephrol 26:1426–1433 DOI: 10.1681/ASN.2014010115
Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Kucuksumer ZS, Ortiz A, Covic A, Kuwabara M, Cherney DZI, van Raalte DH, de Zeeuw D (2019) Renal hyperfiltration defined by high estimated glomerular filtration rate: a risk factor for cardiovascular disease and mortality. Diabetes Obes Metab 21:2368–2383 DOI: 10.1111/dom.13831
Cortinovis M, Perico N, Ruggenenti P, Remuzzi A, Remuzzi G (2022) Glomerular hyperfiltration. Nat Rev Nephrol 18:435–451 DOI: 10.1038/s41581-022-00559-y
Premaratne E, Macisaac RJ, Tsalamandris C, Panagiotopoulos S, Smith T, Jerums G (2005) Renal hyperfiltration in type 2 diabetes: effect of age-related decline in glomerular filtration rate. Diabetologia 48:2486–2493 DOI: 10.1007/s00125-005-0002-9
Adebayo OC, Betukumesu DK, Nkoy AB, Adesoji OM, Ekulu PM, Van den Heuvel LP, Levtchenko EN, Labarque V (2022) Clinical and genetic factors are associated with kidney complications in African children with sickle cell anaemia. Br J Haematol 196:204–214 DOI: 10.1111/bjh.17832
Lee AM, Charlton JR, Carmody JB, Gurka MJ, DeBoer MD (2017) Metabolic risk factors in nondiabetic adolescents with glomerular hyperfiltration. Nephrol Dial Transplant 32:1517–1524
Pottel H, Bjork J, Delanaye P, Nyman U (2022) Evaluation of the creatinine-based chronic kidney disease in children (under 25 years) equation in healthy children and adolescents. Pediatr Nephrol 37:2213–2216 DOI: 10.1007/s00467-022-05429-0
van Dam M, Pottel H, Vreugdenhil ACE (2022) Creatinine-based GFR-estimating equations in children with overweight and obesity. Pediatr Nephrol 37:2393–2403 DOI: 10.1007/s00467-021-05396-y
Xargay-Torrent S, Puerto-Carranza E, Marcelo I, Mas-Pares B, Gomez-Vilarrubla A, Martinez-Calcerrada JM, de Zegher F, Ibanez L, Lopez-Bermejo A, Bassols J (2021) Estimated glomerular filtration rate and cardiometabolic risk factors in a longitudinal cohort of children. Sci Rep 11:11702 DOI: 10.1038/s41598-021-91162-x
Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, Joles JA (2017) Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol 28:1023–1039 DOI: 10.1681/ASN.2016060666
Lumbers ER, Kandasamy Y, Delforce SJ, Boyce AC, Gibson KJ, Pringle KG (2020) Programming of renal development and chronic disease in adult life. Front Physiol 11:757 DOI: 10.3389/fphys.2020.00757
Ranque B, Menet A, Diop IB, Thiam MM, Diallo D, Diop S, Diagne I, Sanogo I, Kingue S, Chelo D, Wamba G, Diarra M, Anzouan JB, N’Guetta R, Diakite CO, Traore Y, Legueun G, Deme-Ly I, Belinga S, Boidy K, Kamara I, Tharaux PL, Jouven X (2014) Early renal damage in patients with sickle cell disease in sub-Saharan Africa: a multinational, prospective, cross-sectional study. Lancet Haematol 1:e64-73 DOI: 10.1016/S2352-3026(14)00007-6
Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Dewi M, Temperley WH, Williams TN, Weatherall DJ, Hay SI (2013) Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 381:142–151 DOI: 10.1016/S0140-6736(12)61229-X
Adebayo OC, Van den Heuvel LP, Olowu WA, Levtchenko EN, Labarque V (2022) Sickle cell nephropathy: insights into the pediatric population. Pediatr Nephrol 37:1231–1243 DOI: 10.1007/s00467-021-05126-4
Hirschberg R (2010) Glomerular hyperfiltration in sickle cell disease. Clin J Am Soc Nephrol 5:748–749 DOI: 10.2215/CJN.01340210
Wang WC, Ware RE, Miller ST, Iyer RV, Casella JF, Minniti CP, Rana S, Thornburg CD, Rogers ZR, Kalpatthi RV, Barredo JC, Brown RC, Sarnaik SA, Howard TH, Wynn LW, Kutlar A, Armstrong FD, Files BA, Goldsmith JC, Waclawiw MA, Huang X, Thompson BW (2011) Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 377:1663–1672 DOI: 10.1016/S0140-6736(11)60355-3
Aygun B, Mortier NA, Smeltzer MP, Hankins JS, Ware RE (2011) Glomerular hyperfiltration and albuminuria in children with sickle cell anemia. Pediatr Nephrol 26:1285–1290 DOI: 10.1007/s00467-011-1857-2
Yee MM, Jabbar SF, Osunkwo I, Clement L, Lane PA, Eckman JR, Guasch A (2011) Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol 6:2628–2633 DOI: 10.2215/CJN.01600211
Ranabothu S, Hafeman M, Manwani D, Reidy K, Morrone K, Lorenzo J, Tria B, Kaskel F, Mahgerefteh J (2020) Ambulatory hypertension in pediatric patients with sickle cell disease and its association with end-organ damage. Cureus 12:e11707
Nnaji UM, Ogoke CC, Okafor HU, Achigbu KI (2020) Sickle cell nephropathy and associated factors among asymptomatic children with sickle cell anaemia. Int J Pediatr 2020:1286432 DOI: 10.1155/2020/1286432
Inusa BPD, Booth C, Iduoriyekemwen N (2020) Glomerular hyperfiltration and albuminuria in adolescents with sickle cell disease: retrospective cross-sectional study. Blood 136(Suppl 1):1–2 DOI: 10.1182/blood-2020-142516
Belisario AR, de Almeida JA, Mendes FG, da Silva DMM, Planes W, Rezende PV, Silva CM, Brito AC, Sales RR, Viana MB, Simoes ESAC (2020) Prevalence and risk factors for albuminuria and glomerular hyperfiltration in a large cohort of children with sickle cell anemia. Am J Hematol 95:E125–E128 DOI: 10.1002/ajh.25763
Zahr RS, Yee ME, Weaver J, Twombley K, Matar RB, Aviles D, Sreedharan R, Rheault MN, Malatesta-Muncher R, Stone H, Srivastava T, Kapur G, Baddi P, Volovelsky O, Pelletier J, Gbadegesin R, Seeherunvong W, Patel HP, Greenbaum LA (2019) Kidney biopsy findings in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol 34:1435–1445 DOI: 10.1007/s00467-019-04237-3
Lebensburger JD, Aban I, Pernell B, Kasztan M, Feig DI, Hilliard LM, Askenazi DJ (2019) Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy. Am J Hematol 94:417–423 DOI: 10.1002/ajh.25390
Geard A, Pule GD, Chetcha Chemegni B, Ngo Bitoungui VJ, Kengne AP, Chimusa ER, Wonkam A (2017) Clinical and genetic predictors of renal dysfunctions in sickle cell anaemia in Cameroon. Br J Haematol 178:629–639 DOI: 10.1111/bjh.14724
Brewin J, Tewari S, Hannemann A, Al Balushi H, Sharpe C, Gibson JS, Rees DC (2017) Early markers of sickle nephropathy in children with sickle cell anemia are associated with red cell cation transport activity. HemaSphere 1:e2 DOI: 10.1097/HS9.0000000000000002
Aloni MN, Ngiyulu RM, Ekulu PM, Mbutiwi FIN, Makulo JR, Gini-Ehungu JL, Nseka NM, Lepira FB (2017) Glomerular hyperfiltration is strongly correlated with age in Congolese children with sickle cell anaemia. Acta Paediatr 106:819–824 DOI: 10.1111/apa.13784
Aloni MN, Ngiyulu RM, Gini-Ehungu JL, Nsibu CN, Ekila MB, Lepira FB, Nseka NM (2014) Renal function in children suffering from sickle cell disease: challenge of early detection in highly resource-scarce settings. PLoS One 9:e96561 DOI: 10.1371/journal.pone.0096561
Bodas P, Huang A, O’Riordan MA, Sedor JR, Dell KM (2013) The prevalence of hypertension and abnormal kidney function in children with sickle cell disease -a cross sectional review. BMC Nephrol 14:2–7 DOI: 10.1186/1471-2369-14-237
Aygun B, Mortier NA, Smeltzer MP, Shulkin BL, Hankins JS, Ware RE (2013) Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am J Hematol 88:116–119 DOI: 10.1002/ajh.23365
Allon M, Lawson L, Eckman JR, Delaney V, Bourke E (1988) Effects of nonsteroidal antiinflammatory drugs on renal function in sickle cell anemia. Kidney Int 34:500–506 DOI: 10.1038/ki.1988.209
Schmitt F, Martinez F, Brillet G, Giatras I, Choukroun G, Girot R, Bachir D, Galacteros F, Lacour B, Grunfeld JP (1998) Early glomerular dysfunction in patients with sickle cell anemia. Am J Kidney Dis 32:208–214 DOI: 10.1053/ajkd.1998.v32.pm9708603
Etteldorf JN, Tuttle AW, Clayton GW (1952) Renal function studies in pediatrics. 1. Renal hemodynamics in children with sickle cell anemia. AMA Am J Dis Child 83:185–191
De Jong PE, Van Eps LWS (1985) Sickle cell nephropathy: new insights into its pathophysiology. Kidney Int 27:711–717 DOI: 10.1038/ki.1985.70
Ataga KI, Orringer EP (2000) Renal abnormalities in sickle cell disease. Am J Hematol 63:205–211 DOI: 10.1002/(SICI)1096-8652(200004)63:4<205::AID-AJH8>3.0.CO;2-8
Turner N, Lameire N (2016) Oxford textbook of clinical nephrology. Oxford University Press, Oxford
Bernstein J, Whitten CF (1960) A histologic appraisal of the kidney in sickle cell anemia. Arch Pathol 70:407–418
Bhathena DB, Sondheimer JH (1991) The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. J Am Soc Nephrol 1:1241–1252 DOI: 10.1681/ASN.V1111241
Olaniran KO, Eneanya D, Nigwekar SU (2019) Sickle cell nephropathy in the pediatric population. Blood Purif 47:205–213 DOI: 10.1159/000494581
Haymann JP, Hammoudi N, Livrozet M, Santin A, Mattioni S, Letavernier E, Frochot V, Jacques CS, Steichen O, Grateau G, Chaignon M, Lionnet F (2021) Hemodynamic and biological correlates of glomerular hyperfiltration in sickle cell patients before and under renin-angiotensin system blocker. Sci Rep 11:11682 DOI: 10.1038/s41598-021-91161-y
Haymann JP, Stankovic K, Levy P, Avellino V, Tharaux PL, Letavernier E, Grateau G, Baud L, Girot R, Lionnet F (2010) Glomerular hyperfiltration in adult sickle cell anemia: a frequent hemolysis associated feature. Clin J Am Soc Nephrol 5:756–761 DOI: 10.2215/CJN.08511109
Nath KA, Katusic ZS (2012) Vasculature and kidney complications in sickle cell disease. J Am Soc Nephrol 23:781–784 DOI: 10.1681/ASN.2011101019
Ziyadeh FN, Musallam KM, Mallat NS, Mallat S, Jaber F, Mohamed AA, Koussa S, Taher AT (2012) Glomerular hyperfiltration and proteinuria in transfusion-independent patients with beta-thalassemia intermedia. Nephron Clin Pract 121:c136-143 DOI: 10.1159/000339787
Mohd Zikre N, Muhamad NA, Eng CSY, Zailanalhuddin NE, Lai CD, Foo JC, Yap SL, Ariffin H, Abu Bakar K (2021) Occult kidney dysfunction in children with transfusion-dependent thalassemia. Front Pediatr 9:754813 DOI: 10.3389/fped.2021.754813
Quinn CT, Johnson VL, Kim HY, Trachtenberg F, Vogiatzi MG, Kwiatkowski JL, Neufeld EJ, Fung E, Oliveri N, Kirby M, Giardina PJ, Thalassemia Clinical Research Network (2011) Renal dysfunction in patients with thalassaemia. Br J Haematol 153:111–117 DOI: 10.1111/j.1365-2141.2010.08477.x
Deveci B, Kurtoglu A, Kurtoglu E, Salim O, Toptas T (2016) Documentation of renal glomerular and tubular impairment and glomerular hyperfiltration in multitransfused patients with beta thalassemia. Ann Hematol 95:375–381 DOI: 10.1007/s00277-015-2561-2
Moghal NE, Ferreira MA, Howie AJ, Milford DV, Raafat E, Taylor CM (1998) The late histologic findings in diarrhea-associated hemolytic uremic syndrome. J Pediatr 133:220–223 DOI: 10.1016/S0022-3476(98)70223-9
Helal I, Reed B, McFann K, Yan XD, Fick-Brosnahan GM, Cadnapaphornchai M, Schrier RW (2011) Glomerular hyperfiltration and renal progression in children with autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 6:2439–2443 DOI: 10.2215/CJN.01010211
Helal I, Reed B, Schrier RW (2012) Emergent early markers of renal progression in autosomal-dominant polycystic kidney disease patients: implications for prevention and treatment. Am J Nephrol 36:162–167 DOI: 10.1159/000341263
Grantham JJ, Chapman AB, Torres VE (2006) Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin J Am Soc Nephrol 1:148–157 DOI: 10.2215/CJN.00330705
Messchendorp AL, van Londen M, Taylor JM, de Borst MH, Navis G, Casteleijn NF, Gaillard C, Bakker SJL, Gansevoort RT, DIPAK Consortium (2018) Kidney function reserve capacity in early and later stage autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 13:1680–1692 DOI: 10.2215/CJN.03650318
Selistre L, de Souza V, Ranchin B, Hadj-Aissa A, Cochat P, Dubourg L (2012) Early renal abnormalities in children with postnatally diagnosed autosomal dominant polycystic kidney disease. Pediatr Nephrol 27:1589–1593 DOI: 10.1007/s00467-012-2192-y
Wong H, Vivian L, Weiler G, Filler G (2004) Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis 43:624–628 DOI: 10.1053/j.ajkd.2003.12.026
Dimitrakov D, Kumchev E, Lyutakova E, Grigorov L (1993) Glomerular hyperfiltration and serum beta 2-microglobulin used as early markers in diagnosis of autosomal dominant polycystic kidney disease. Folia Med (Plovdiv) 35:59–62
Schrier RW (2009) Renal volume, renin-angiotensin-aldosterone system, hypertension, and left ventricular hypertrophy in patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 20:1888–1893 DOI: 10.1681/ASN.2008080882
Torres VE (2005) Vasopressin antagonists in polycystic kidney disease. Kidney Int 68:2405–2418 DOI: 10.1111/j.1523-1755.2005.00703.x
Bankir L, Bichet DG (2019) What can copeptin tell us in patients with autosomal dominant polycystic disease? Kidney Int 96:19–22 DOI: 10.1016/j.kint.2019.02.037
Mendell JR, Shilling C, Leslie ND, Flanigan KM, Al-Dahhak R, Gastier-Foster J, Kneile K, Dunn DM, Duval B, Aoyagi A, Hamil C, Mahmoud M, Roush K, Bird L, Rankin C, Lilly H, Street N, Chandrasekar R, Weiss RB (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313 DOI: 10.1002/ana.23528
Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928 DOI: 10.1016/0092-8674(87)90579-4
Matsumura T, Saito T, Fujimura H, Shinno S, Sakoda S (2011) A longitudinal cause-of-death analysis of patients with Duchenne muscular dystrophy. Rinsho Shinkeigaku 51:743–750 DOI: 10.5692/clinicalneurol.51.743
Matsumura T, Saito T, Fujimura H, Sakoda S (2012) Renal dysfunction is a frequent complication in patients with advanced stage of Duchenne muscular dystrophy. Rinsho Shinkeigaku 52:211–217 DOI: 10.5692/clinicalneurol.52.211
Braat E, Hoste L, De Waele L, Gheysens O, Vermeersch P, Goffin K, Pottel H, Goemans N, Levtchenko E (2015) Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord 25:381–387 DOI: 10.1016/j.nmd.2015.01.005
Haenggi T, Fritschy JM (2006) Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 63:1614–1631 DOI: 10.1007/s00018-005-5461-0
Haenggi T, Schaub MC, Fritschy JM (2005) Molecular heterogeneity of the dystrophin-associated protein complex in the mouse kidney nephron: differential alterations in the absence of utrophin and dystrophin. Cell Tissue Res 319:299–313 DOI: 10.1007/s00441-004-0999-y
Amatruda M, Gembillo G, Giuffrida AE, Santoro D, Conti G (2021) The aggressive diabetic kidney disease in youth-onset type 2 diabetes: pathogenetic mechanisms and potential therapies. Medicina (Kaunas) 57:868 DOI: 10.3390/medicina57090868
Bjornstad P, Cherney DZ, Maahs DM, Nadeau KJ (2016) Diabetic kidney disease in adolescents with type 2 diabetes: new insights and potential therapies. Curr Diab Rep 16:11 DOI: 10.1007/s11892-015-0708-0
Bjornstad P, Roncal C, Milagres T, Pyle L, Lanaspa MA, Bishop FK, Snell-Bergeon JK, Johnson RJ, Wadwa RP, Maahs DM (2016) Hyperfiltration and uricosuria in adolescents with type 1 diabetes. Pediatr Nephrol 31:787–793 DOI: 10.1007/s00467-015-3299-8
Lovshin JA, Skrtic M, Bjornstad P, Moineddin R, Daneman D, Dunger D, Reich HN, Mahmud F, Scholey J, Cherney DZI, Sochett E (2018) Hyperfiltration, urinary albumin excretion, and ambulatory blood pressure in adolescents with type 1 diabetes mellitus. Am J Physiol Renal Physiol 314:F667–F674 DOI: 10.1152/ajprenal.00400.2017
Har RL, Reich HN, Scholey JW, Daneman D, Dunger DB, Moineddin R, Dalton RN, Motran L, Elia Y, Deda L, Ostrovsky M, Sochett EB, Mahmud FH, Cherney DZ (2014) The urinary cytokine/chemokine signature of renal hyperfiltration in adolescents with type 1 diabetes. PLoS One 9:e111131 DOI: 10.1371/journal.pone.0111131
Hernandez-Marco R, Codoner-Franch P, Pons Morales S, Del Castillo VC, Boix Garcia L, Valls Belles V (2009) Oxidant/antioxidant status and hyperfiltration in young patients with type 1 diabetes mellitus. Pediatr Nephrol 24:121–127 DOI: 10.1007/s00467-008-0961-4
Sochett EB, Cherney DZ, Curtis JR, Dekker MG, Scholey JW, Miller JA (2006) Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J Am Soc Nephrol 17:1703–1709 DOI: 10.1681/ASN.2005080872
Dart AB, McGavock J, Sharma A, Chateau D, Schwartz GJ, Blydt-Hansen T (2019) Estimating glomerular filtration rate in youth with obesity and type 2 diabetes: the iCARE study equation. Pediatr Nephrol 34:1565–1574 DOI: 10.1007/s00467-019-04250-6
Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, Willi SM, Laffel L, Arslanian S, Nadeau KJ, TODAY Study Group (2018) Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: an observational analysis of data from the TODAY clinical trial. Am J Kidney Dis 71:65–74 DOI: 10.1053/j.ajkd.2017.07.015
Bjornstad P, Maahs DM, Cherney DZ, Cree-Green M, West A, Pyle L, Nadeau KJ (2014) Insulin sensitivity is an important determinant of renal health in adolescents with type 2 diabetes. Diabetes Care 37:3033–3039 DOI: 10.2337/dc14-1331
Sellers EA, Blydt-Hansen TD, Dean HJ, Gibson IW, Birk PE, Ogborn M (2009) Macroalbuminuria and renal pathology in First Nation youth with type 2 diabetes. Diabetes Care 32:786–790 DOI: 10.2337/dc08-1828
Osterby R, Gundersen HJ (1975) Glomerular size and structure in diabetes mellitus. I. Early Abnormalities. Diabetologia 11:225–229
Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ (2010) The clinical significance of hyperfiltration in diabetes. Diabetologia 53:2093–2104 DOI: 10.1007/s00125-010-1794-9
Trevisan R, Dodesini AR (2017) The hyperfiltering kidney in diabetes. Nephron 136:277–280 DOI: 10.1159/000448183
Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306:F194-204 DOI: 10.1152/ajprenal.00520.2013
Bank N (1991) Mechanisms of diabetic hyperfiltration. Kidney Int 40:792–807 DOI: 10.1038/ki.1991.277
Vora JP, Dolben J, Dean JD, Thomas D, Williams JD, Owens DR, Peters JR (1992) Renal hemodynamics in newly presenting non-insulin dependent diabetes mellitus. Kidney Int 41:829–835 DOI: 10.1038/ki.1992.127
Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, Hirschman GH, Myers BD (1996) Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. Diabetic Renal Disease Study Group. N Engl J Med 335:1636–1642 DOI: 10.1056/NEJM199611283352203
Keller CK, Bergis KH, Fliser D, Ritz E (1996) Renal findings in patients with short-term type 2 diabetes. J Am Soc Nephrol 7:2627–2635 DOI: 10.1681/ASN.V7122627
O’Bryan GT, Hostetter TH (1997) The renal hemodynamic basis of diabetic nephropathy. Semin Nephrol 17:93–100
Levine DZ (2008) Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties. Clin Sci (Lond) 114:109–118 DOI: 10.1042/CS20070088
Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85-93
Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10:2569–2576 DOI: 10.1681/ASN.V10122569
Thomson SC, Deng A, Bao D, Satriano J, Blantz RC, Vallon V (2001) Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 107:217–224 DOI: 10.1172/JCI10963
Vervoort G, Veldman B, Berden JH, Smits P, Wetzels JF (2005) Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion. Eur J Clin Invest 35:330–336 DOI: 10.1111/j.1365-2362.2005.01497.x
Pruijm M, Wuerzner G, Maillard M, Bovet P, Renaud C, Bochud M, Burnier M (2010) Glomerular hyperfiltration and increased proximal sodium reabsorption in subjects with type 2 diabetes or impaired fasting glucose in a population of the African region. Nephrol Dial Transplant 25:2225–2231 DOI: 10.1093/ndt/gfq008
Sallstrom J, Carlsson PO, Fredholm BB, Larsson E, Persson AE, Palm F (2007) Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism. Acta Physiol (Oxf) 190:253–259 DOI: 10.1111/j.1748-1716.2007.01705.x
World health organization. Health topics. Malnutrition. https://www.who.int/health-topics/malnutrition. Accessed 16 February 2022
Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, Calderon-Margalit R (2012) Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med 172:1644–1650 DOI: 10.1001/2013.jamainternmed.85
Wang Y, Lobstein T (2006) Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes 1:11–25 DOI: 10.1080/17477160600586747
Centers for Disease Control and Prevention (2021) Childhood Overweight & Obesity. Overweight & Obesity. https://www.cdc.gov/obesity/childhood/index.html. Accessed 18 February 2022
Okabayashi Y, Tsuboi N, Sasaki T, Haruhara K, Kanzaki G, Koike K, Shimizu A, D’Agati VD, Yokoo T (2020) Single-nephron GFR in patients with obesity-related glomerulopathy. Kidney Int Rep 5:1218–1227 DOI: 10.1016/j.ekir.2020.05.013
Ruster C, Wolf G (2013) The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin Nephrol 33:44–53 DOI: 10.1016/j.semnephrol.2012.12.002
Muzzio ML, Kabakian ML, Morosan-Allo Y, Ferrari S, Fallahi P, Fernandez J, Santucci MP, Andres-Lacueva C, Antonelli A, Brenta G, Merono T (2020) Association of glomerular hyperfiltration with serum chemokine levels and metabolic features in prepubertal children with overweight/obesity. Nutr Metab Cardiovasc Dis 30:1188–1195 DOI: 10.1016/j.numecd.2020.03.012
Turer CB, Baum M, Dubourg L, Selistre LS, Skinner AC (2019) Prevalence of hyperfiltration among US youth/young adults with overweight and obesity: a population-based association study. Obes Sci Pract 5:570–580 DOI: 10.1002/osp4.365
Santucci MP, Muzzio ML, Peredo MS, Brovarone L, Scricciolo R, Diez C, Andres-Lacueva C, Kabakian ML, Merono T (2020) Different alterations of glomerular filtration rate and their association with uric acid in children and adolescents with type 1 diabetes or with overweight/obesity. Pediatr Diabetes 21:657–663 DOI: 10.1111/pedi.13008
Arora S, Dunkley L, Waldman LM, Chin VL, Umpaichitra V (2020) Kidney function in minority children and adolescents with metabolically healthy and unhealthy obesity. Clin Obes 10:e12345 DOI: 10.1111/cob.12345
Bielopolski D, Singh N, Bentur OS, Renert-Yuval Y, MacArthur R, Vasquez KS, Moftah DS, Vaughan RD, Charytan DM, Kost RG, Tobin JN (2021) Obesity related glomerulopathy in adolescent women: the effect of body surface area. Kidney360 3:113–121 DOI: 10.34067/KID.0005312021
Franchini S, Savino A, Marcovecchio ML, Tumini S, Chiarelli F, Mohn A (2015) The effect of obesity and type 1 diabetes on renal function in children and adolescents. Pediatr Diabetes 16:427–433 DOI: 10.1111/pedi.12196
Srivastava T (2006) Nondiabetic consequences of obesity on kidney. Pediatr Nephrol 21:463–470 DOI: 10.1007/s00467-006-0027-4
Nehus E, Mitsnefes M (2019) Childhood obesity and the metabolic syndrome. Pediatr Clin North Am 66:31–43 DOI: 10.1016/j.pcl.2018.08.004
Palatini P (2012) Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol Dial Transplant 27:1708–1714 DOI: 10.1093/ndt/gfs037
D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, Praga M (2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 12:453–471 DOI: 10.1038/nrneph.2016.75
Nehus EJ, Khoury JC, Inge TH, Xiao N, Jenkins TM, Moxey-Mims MM, Mitsnefes MM (2017) Kidney outcomes three years after bariatric surgery in severely obese adolescents. Kidney Int 91:451–458 DOI: 10.1016/j.kint.2016.09.031
van Dam M, Rijks J, Dorenbos E, Horuz F, van Dael K, Vreugdenhil A (2019) The effect of one year lifestyle intervention on eGFR in children and adolescents with overweight, obesity and morbid obesity. Sci Rep 9:4504 DOI: 10.1038/s41598-019-40767-4
Chang AR, George J, Levey AS, Coresh J, Grams ME, Inker LA (2020) Performance of glomerular filtration rate estimating equations before and after bariatric surgery. Kidney Med 2(699–706):e691
Ko GJ, Rhee CM, Kalantar-Zadeh K, Joshi S (2020) The effects of high-protein diets on kidney health and longevity. J Am Soc Nephrol 31:1667–1679 DOI: 10.1681/ASN.2020010028
Kamper AL, Strandgaard S (2017) Long-term effects of high-protein diets on renal function. Annu Rev Nutr 37:347–369 DOI: 10.1146/annurev-nutr-071714-034426
Westland R, Schreuder MF, Bokenkamp A, Spreeuwenberg MD, van Wijk JA (2011) Renal injury in children with a solitary functioning kidney–the KIMONO study. Nephrol Dial Transplant 26:1533–1541 DOI: 10.1093/ndt/gfq844
Schreuder MF, Westland R, van Wijk JA (2009) Unilateral multicystic dysplastic kidney: a meta-analysis of observational studies on the incidence, associated urinary tract malformations and the contralateral kidney. Nephrol Dial Transplant 24:1810–1818 DOI: 10.1093/ndt/gfn777
Westland R, Schreuder MF, Ket JC, van Wijk JA (2013) Unilateral renal agenesis: a systematic review on associated anomalies and renal injury. Nephrol Dial Transplant 28:1844–1855 DOI: 10.1093/ndt/gft012
Narkun-Burgess DM, Nolan CR, Norman JE, Page WF, Miller PL, Meyer TW (1993) Forty-five year follow-up after uninephrectomy. Kidney Int 43:1110–1115 DOI: 10.1038/ki.1993.156
McArdle Z, Schreuder MF, Moritz KM, Denton KM, Singh RR (2020) Physiology and pathophysiology of compensatory adaptations of a solitary functioning kidney. Front Physiol 11:725 DOI: 10.3389/fphys.2020.00725
Schreuder MF (2018) Life with one kidney. Pediatr Nephrol 33:595–604 DOI: 10.1007/s00467-017-3686-4
Maluf NS (1997) On the enlargement of the normal congenitally solitary kidney. Br J Urol 79:836–841 DOI: 10.1046/j.1464-410X.1997.00215.x
Westland R, Schreuder MF, van Goudoever JB, Sanna-Cherchi S, van Wijk JA (2014) Clinical implications of the solitary functioning kidney. Clin J Am Soc Nephrol 9:978–986 DOI: 10.2215/CJN.08900813
van Vuuren SH, Sol CM, Broekhuizen R, Lilien MR, Oosterveld MJ, Nguyen TQ, Goldschmeding R, de Jong TP (2012) Compensatory growth of congenital solitary kidneys in pigs reflects increased nephron numbers rather than hypertrophy. PLoS One 7:e49735 DOI: 10.1371/journal.pone.0049735
Douglas-Denton R, Moritz KM, Bertram JF, Wintour EM (2002) Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J Am Soc Nephrol 13:406–410 DOI: 10.1681/ASN.V132406
Snoek R, de Heus R, de Mooij KJ, Pistorius LR, Lilien MR, Lely AT, Bekker MN, de Jong T (2018) Assessing nephron hyperplasia in fetal congenital solitary functioning kidneys by measuring renal papilla number. Am J Kidney Dis 72:465–467 DOI: 10.1053/j.ajkd.2018.03.018
Layton AT, Edwards A, Vallon V (2017) Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis. Am J Physiol Renal Physiol 313:F199–F209 DOI: 10.1152/ajprenal.00018.2017
Fong D, Denton KM, Moritz KM, Evans R, Singh RR (2014) Compensatory responses to nephron deficiency: adaptive or maladaptive? Nephrology (Carlton) 19:119–128 DOI: 10.1111/nep.12198
Lankadeva YR, Singh RR, Tare M, Moritz KM, Denton KM (2014) Loss of a kidney during fetal life: long-term consequences and lessons learned. Am J Physiol Renal Physiol 306:F791-800 DOI: 10.1152/ajprenal.00666.2013
Groen In ’t Woud S, Westland R, Feitz WFJ, Roeleveld N, van Wijk JAE, van der Zanden LFM, Schreuder MF (2021) Clinical management of children with a congenital solitary functioning kidney: overview and recommendations. Eur Urol Open Sci 25:11–20 DOI: 10.1016/j.euros.2021.01.003
Groen In ’t Woud S, Gobino A, Roeleveld N, van den Heuvel L, Feitz WFJ, van der Zanden LFM, Schreuder MF (2022) Kidney injury rates after unilateral nephrectomy in childhood - a systematic review and meta-analysis. Nephrol Dial Transplant 37:2457–2473
Blantz RC, Pelayo JC (1984) A functional role for the tubuloglomerular feedback mechanism. Kidney Int 25:739–746 DOI: 10.1038/ki.1984.84
Schreuder M, Delemarre-van de Waal H, van Wijk A (2006) Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press Res 29:108–125 DOI: 10.1159/000094538
Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910 DOI: 10.1681/ASN.2009121248
Luyckx VA, Brenner BM (2005) Low birth weight, nephron number, and kidney disease. Kidney Int Suppl:S68–77
Chapman AB (2012) The fetal environment: a critical phase that determines future renal outcomes in autosomal dominant polycystic kidney disease. Kidney Int 81:814–815 DOI: 10.1038/ki.2012.8
Hodgin JB, Rasoulpour M, Markowitz GS, D’Agati VD (2009) Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 4:71–76 DOI: 10.2215/CJN.01700408
Kaze FF, Nguefack S, Asong CM, Assob JCN, Nansseu JR, Kowo MP, Nzana V, Kalla GCM, Halle MP (2020) Birth weight and renal markers in children aged 5–10 years in Cameroon: a cross-sectional study. BMC Nephrol 21:464 DOI: 10.1186/s12882-020-02133-9
Reyes L, Manalich R (2005) Long-term consequences of low birth weight. Kidney Int 68:S107-111 DOI: 10.1111/j.1523-1755.2005.09718.x
Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777 DOI: 10.1038/ki.1996.265
Hibino S, Abe Y, Watanabe S, Yamaguchi Y, Nakano Y, Tatsuno M, Itabashi K (2015) Proteinuria caused by glomerular hypertension during adolescence associated with extremely premature birth: a report of two cases. Pediatr Nephrol 30:1889–1892 DOI: 10.1007/s00467-015-3149-8
Kasztan M, Fox BM, Lebensburger JD, Hyndman KA, Speed JS, Pollock JS, Pollock DM (2019) Hyperfiltration predicts long-term renal outcomes in humanized sickle cell mice. Blood Adv 3:1460–1475 DOI: 10.1182/bloodadvances.2018028878
Kasztan M, Pollock DM (2019) Impact of ET-1 and sex in glomerular hyperfiltration in humanized sickle cell mice. Clin Sci (Lond) 133:1475–1486 DOI: 10.1042/CS20190215
Derebail VK, Zhou Q, Ciccone EJ, Cai J, Ataga KI (2021) Longitudinal study of glomerular hyperfiltration and normalization of estimated glomerular filtration in adults with sickle cell disease. Br J Haematol 195:123–132 DOI: 10.1111/bjh.17723
Kalk P, Thone-Reineke C, Schwarz A, Godes M, Bauer C, Pfab T, Hocher B (2009) Renal phenotype of ET-1 transgenic mice is modulated by androgens. Eur J Med Res 14:55–58 DOI: 10.1186/2047-783X-14-2-55
Polderman KH, Stehouwer CD, van Kamp GJ, Dekker GA, Verheugt FW, Gooren LJ (1993) Influence of sex hormones on plasma endothelin levels. Ann Intern Med 118:429–432 DOI: 10.7326/0003-4819-118-6-199303150-00006
Dousdampanis P, Trigka K, Fourtounas C, Bargman JM (2014) Role of testosterone in the pathogenesis, progression, prognosis and comorbidity of men with chronic kidney disease. Ther Apher Dial 18:220–230
Skrtic M, Lytvyn Y, Bjornstad P, Reich HN, Scholey JW, Yip P, Sochett EB, Perkins B, Cherney DZ (2017) Influence of sex on hyperfiltration in patients with uncomplicated type 1 diabetes. Am J Physiol Renal Physiol 312:F599–F606 DOI: 10.1152/ajprenal.00357.2016
Bjornstad P, Cherney DZ (2018) Renal hyperfiltration in adolescents with type 2 diabetes: physiology, sex differences, and implications for diabetic kidney disease. Curr Diab Rep 18:22 DOI: 10.1007/s11892-018-0996-2
Delgadillo D, Barbier O, Sierra G, Reyes JL (2014) Retinoic acid improves recovery after nephrectomy and decreases renal TGF-beta1 expression Gender-related effects. Fundam Clin Pharmacol 28:170–179 DOI: 10.1111/fcp.12013
Mulroney SE, Woda C, Johnson M, Pesce C (1999) Gender differences in renal growth and function after uninephrectomy in adult rats. Kidney Int 56:944–953 DOI: 10.1046/j.1523-1755.1999.00647.x
Shapiro JI, Dial LD (2012) How safe is unilateral nephrectomy? Hypertension 60:1383–1384 DOI: 10.1161/HYPERTENSIONAHA.112.200550
Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, Bowden DW, Langefeld CD, Oleksyk TK, Uscinski Knob AL, Bernhardy AJ, Hicks PJ, Nelson GW, Vanhollebeke B, Winkler CA, Kopp JB, Pays E, Pollak MR (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845 DOI: 10.1126/science.1193032
Ekulu PM, Nkoy AB, Betukumesu DK, Aloni MN, Makulo JRR, Sumaili EK, Mafuta EM, Elmonem MA, Arcolino FO, Kitetele FN, Lepira FB, van den Heuvel LP, Levtchenko EN (2019) APOL1 risk genotypes are associated with early kidney damage in children in sub-Saharan Africa. Kidney Int Rep 4:930–938 DOI: 10.1016/j.ekir.2019.04.002
Ekulu PM, Nkoy AB, Adebayo OC, Kazadi OK, Aloni MN, Arcolino FO, Ngiyulu RM, Gini JE, Lepira FB, Van den Heuvel LP, Levtchenko EN (2021) A focus on the association of Apol1 with kidney disease in children. Pediatr Nephrol 36:777–788 DOI: 10.1007/s00467-020-04553-z
Fu Y, Zhu JY, Richman A, Zhang Y, Xie X, Das JR, Li J, Ray PE, Han Z (2017) APOL1-G1 in nephrocytes induces hypertrophy and accelerates cell death. J Am Soc Nephrol 28:1106–1116 DOI: 10.1681/ASN.2016050550
Ekulu PM, Adebayo OC, Decuypere JP, Bellucci L, Elmonem MA, Nkoy AB, Mekahli D, Bussolati B, van den Heuvel LP, Arcolino FO, Levtchenko EN (2021) Novel Human Podocyte Cell Model Carrying G2/G2 APOL1 High-Risk Genotype. Cells 10:1914 DOI: 10.3390/cells10081914
Hoy WE, Hughson MD, Kopp JB, Mott SA, Bertram JF, Winkler CA (2015) APOL1 risk alleles are associated with exaggerated age-related changes in glomerular number and volume in African-American adults: an autopsy study. J Am Soc Nephrol 26:3179–3189 DOI: 10.1681/ASN.2014080768
Song P, Zhang Y, Yu J, Zha M, Zhu Y, Rahimi K, Rudan I (2019) Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr 173:1154–1163 DOI: 10.1001/jamapediatrics.2019.3310
Bell CS, Samuel JP, Samuels JA (2019) Prevalence of hypertension in children. Hypertension 73:148–152 DOI: 10.1161/HYPERTENSIONAHA.118.11673
Colombatti R, Maschietto N, Varotto E, Grison A, Grazzina N, Meneghello L, Teso S, Carli M, Milanesi O, Sainati L (2010) Pulmonary hypertension in sickle cell disease children under 10 years of age. Br J Haematol 150:601–609 DOI: 10.1111/j.1365-2141.2010.08269.x
Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, Silink M, Donaghue KC (2006) Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29:1300–1306 DOI: 10.2337/dc05-2470
Davidovits M, Cleper R, Eizenberg N, Hocherman O, Mashiach R (2017) Outcomes of prenatally diagnosed solitary functioning kidney during early life. J Perinatol 37:1325–1329 DOI: 10.1038/jp.2017.143
Schmieder RE, Veelken R, Gatzka CD, Ruddel H, Schachinger H (1995) Predictors for hypertensive nephropathy: results of a 6-year follow-up study in essential hypertension. J Hypertens 13:357–365 DOI: 10.1097/00004872-199503000-00012
Schmieder RE, Messerli FH, Garavaglia G, Nunez B (1990) Glomerular hyperfiltration indicates early target organ damage in essential hypertension. JAMA 264:2775–2780 DOI: 10.1001/jama.1990.03450210075036
Larsson L, Aperia A, Wilton P (1980) Effect of normal development on compensatory renal growth. Kidney Int 18:29–35 DOI: 10.1038/ki.1980.107
Krohn AG, Ogden DA, Holmes JH (1966) Renal function in 29 healthy adults before and after nephrectomy. JAMA 196:322–324 DOI: 10.1001/jama.1966.03100170064019
Fesler P, Mourad G, du Cailar G, Ribstein J, Mimran A (2015) Arterial stiffness: an independent determinant of adaptive glomerular hyperfiltration after kidney donation. Am J Physiol Renal Physiol 308:F567-571 DOI: 10.1152/ajprenal.00524.2014
Abou Jaoude P, Dubourg L, Bacchetta J, Berthiller J, Ranchin B, Cochat P (2011) Congenital versus acquired solitary kidney: is the difference relevant? Nephrol Dial Transplant 26:2188–2194 DOI: 10.1093/ndt/gfq659
Donate-Correa J, Ferri CM, Sanchez-Quintana F, Perez-Castro A, Gonzalez-Luis A, Martin-Nunez E, Mora-Fernandez C, Navarro-Gonzalez JF (2021) Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications. Front Med (Lausanne) 7:628289 DOI: 10.3389/fmed.2020.628289
DiPetrillo K, Gesek FA (2004) Pentoxifylline ameliorates renal tumor necrosis factor expression, sodium retention, and renal hypertrophy in diabetic rats. Am J Nephrol 24:352–359 DOI: 10.1159/000079121
DiPetrillo K, Coutermarsh B, Gesek FA (2003) Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284:F113-121 DOI: 10.1152/ajprenal.00026.2002
Yu HC, Burrell LM, Black MJ, Wu LL, Dilley RJ, Cooper ME, Johnston CI (1998) Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation 98:2621–2628 DOI: 10.1161/01.CIR.98.23.2621
Wang H, Li J, Gai Z, Kullak-Ublick GA, Liu Z (2017) TNF-alpha deficiency prevents renal inflammation and oxidative stress in obese mice. Kidney Blood Press Res 42:416–427 DOI: 10.1159/000478869
Correia-Costa L, Sousa T, Morato M, Cosme D, Afonso J, Moura C, Mota C, Areias JC, Guerra A, Schaefer F, Caldas Afonso A, Barros H, Albino-Teixeira A, Azevedo A (2016) Association of myeloperoxidase levels with cardiometabolic factors and renal function in prepubertal children. Eur J Clin Invest 46:50–59 DOI: 10.1111/eci.12564
Johnson RJ, Couser WG, Chi EY, Adler S, Klebanoff SJ (1987) New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J Clin Invest 79:1379–1387 DOI: 10.1172/JCI112965
Odobasic D, Kitching AR, Semple TJ, Holdsworth SR (2007) Endogenous myeloperoxidase promotes neutrophil-mediated renal injury, but attenuates T cell immunity inducing crescentic glomerulonephritis. J Am Soc Nephrol 18:760–770 DOI: 10.1681/ASN.2006040375
Wang M, Wang Z, Chen Y, Dong Y (2022) Kidney damage caused by obesity and its feasible treatment drugs. Int J Mol Sci 23:747 DOI: 10.3390/ijms23020747
Briffa JF, McAinch AJ, Poronnik P, Hryciw DH (2013) Adipokines as a link between obesity and chronic kidney disease. Am J Physiol Renal Physiol 305:F1629-1636 DOI: 10.1152/ajprenal.00263.2013
Sharma M, Sharma R, McCarthy ET, Savin VJ, Srivastava T (2017) Hyperfiltration-associated biomechanical forces in glomerular injury and response: potential role for eicosanoids. Prostaglandins Other Lipid Mediat 132:59–68 DOI: 10.1016/j.prostaglandins.2017.01.003
Srivastava T, Hariharan S, Alon US, McCarthy ET, Sharma R, El-Meanawy A, Savin VJ, Sharma M (2018) Hyperfiltration-mediated injury in the remaining kidney of a transplant donor. Transplantation 102:1624–1635 DOI: 10.1097/TP.0000000000002304
Chagnac A, Zingerman B, Rozen-Zvi B, Herman-Edelstein M (2019) Consequences of glomerular hyperfiltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron 143:38–42 DOI: 10.1159/000499486
Minakawa A, Fukuda A, Sato Y, Kikuchi M, Kitamura K, Wiggins RC, Fujimoto S (2019) Podocyte hypertrophic stress and detachment precedes hyperglycemia or albuminuria in a rat model of obesity and type2 diabetes-associated nephropathy. Sci Rep 9:18485 DOI: 10.1038/s41598-019-54692-z
Fukuda A, Chowdhury MA, Venkatareddy MP, Wang SQ, Nishizono R, Suzuki T, Wickman LT, Wiggins JE, Muchayi T, Fingar D, Shedden KA, Inoki K, Wiggins RC (2012) Growth-dependent podocyte failure causes glomerulosclerosis. J Am Soc Nephrol 23:1351–1363 DOI: 10.1681/ASN.2012030271
Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG (2009) Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia 52:691–697 DOI: 10.1007/s00125-009-1268-0
Low S, Zhang X, Wang J, Yeoh LY, Liu YL, Ang KKL, Tang WE, Kwan PY, Tavintharan S, Sum CF, Lim SC (2018) Long-term prospective observation suggests that glomerular hyperfiltration is associated with rapid decline in renal filtration function: a multiethnic study. Diab Vasc Dis Res 15:417–423 DOI: 10.1177/1479164118776465
Molitch ME, Gao X, Bebu I, de Boer IH, Lachin J, Paterson A, Perkins B, Saenger AK, Steffes M, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group (2019) Early glomerular hyperfiltration and long-term kidney outcomes in type 1 diabetes: the DCCT/EDIC experience. Clin J Am Soc Nephrol 14:854–861 DOI: 10.2215/CJN.14831218