Molecular Biology; crispr; human embryonic stem cells
Abstract :
[en] The chromatin remodeler Chromodomain-helicase-DNA-binding protein 4 (CHD4) is crucial for the development of multiple organ systems. Functional mutations of CHD4 have recently been described in a developmental disorder, namely Siffrim-Hitz-Weiss syndrome (SIHIWES). Herein, we have generated a homozygous CHD4G1003D hESC line (WAe025-A-1) using CRISPR/eCas9-based gene editing in the WA-25 hESC line. The edited hESC line maintains normal karyotype, pluripotency, and ability to differentiate into three germ layers. This cell line will be a valuable resource for studying the functional role of CHD4 during the development and disease modeling of SIHIWES in vitro.
Basta J. Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease Transl. Res. 2015 165 36 47 10.1016/j.trsl.2014.05.003 24880148
Hoffmann A. Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders Front. Genet. 2019 10 682 10.3389/fgene.2019.00682
Chohra I. Chung K. Giri S. Malgrange B. ATP-Dependent Chromatin Remodellers in Inner Ear Development Cells 2023 12 532 10.3390/cells12040532
Zhao H. Han Z. Liu X. Gu J. Tang F. Wei G. Jin Y. The chromatin remodeler Chd4 maintains embryonic stem cell identity by controlling pluripotency- and differentiation-associated genes J. Biol. Chem. 2017 292 8507 8519 10.1074/jbc.M116.770248
Hirota A. Nakajima-Koyama M. Ashida Y. Nishida E. The nucleosome remodeling and deacetylase complex protein CHD4 regulates neural differentiation of mouse embryonic stem cells by down-regulating p53 J. Biol. Chem. 2019 294 195 209 10.1074/jbc.RA118.004086
Yoshida T. Hazan I. Zhang J. Ng S.Y. Naito T. Snippert H.J. Heller E.J. Qi X. Lawton L.N. Williams C.J. et al. The role of the chromatin remodeler Mi-2β in hematopoietic stem cell self-renewal and multilineage differentiation Genes Dev. 2008 22 1174 1189 10.1101/gad.1642808 18451107
Jia M. Zou X. Yin S. Tian W. Zhao Y. Wang H. Xu G. Cai W. Shao Q. CHD4 orchestrates the symphony of T and B lymphocytes development and a good mediator in preventing from autoimmune disease Immun. Inflamm. Dis. 2022 10 e644 10.1002/iid3.644 35759243
Wilczewski C.M. Hepperla A.J. Shimbo T. Wasson L. Robbe Z.L. Davis I.J. Wade P.A. Conlon F.L. CHD4 and the NuRD complex directly control cardiac sarcomere formation Proc. Natl. Acad. Sci. USA 2018 115 6727 6732 10.1073/pnas.1722219115
Robbe Z.L. Shi W. Wasson L.K. Scialdone A.P. Wilczewski C.M. Sheng X. Hepperla A.J. Akerberg B.N. Pu W.T. Cristea I.M. et al. CHD4 is recruited by GATA4 and NKX2-5 to repress noncardiac gene programs in the developing heart Genes Dev. 2022 36 468 482 10.1101/gad.349154.121
Denner D.R. Rauchman M. Mi-2/NuRD is required in renal progenitor cells during embryonic kidney development Dev. Biol. 2013 375 105 116 10.1016/j.ydbio.2012.11.018 23201013
Ostapcuk V. Mohn F. Carl S.H. Basters A. Hess D. Iesmantavicius V. Lampersberger L. Flemr M. Pandey A. Thomä N.H. et al. Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes Nature 2018 557 739 743 10.1038/s41586-018-0153-8 29795351
O’Shaughnessy-Kirwan A. Signolet J. Costello I. Gharbi S. Hendrich B. Constraint of gene expression by chromatin remodelling protein CHD4 facilitates lineage specification Development 2015 142 2586 2597 10.1242/dev.125450 26116663
Weiss K. Terhal P.A. Cohen L. Bruccoleri M. Irving M. Martinez A.F. Rosenfeld J.A. Machol K. Yang Y. Liu P. et al. De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms Am. J. Hum. Genet. 2016 99 934 941 10.1016/j.ajhg.2016.08.001 27616479
Sifrim A. Hitz M.-P. Wilsdon A. Breckpot J. Al Turki S.H. Thienpont B. McRae J. Fitzgerald T.W. Singh T. Swaminathan G.J. et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing Nat. Genet. 2016 48 1060 1065 10.1038/ng.3627 27479907
Pinard A. Guey S. Guo D. Cecchi A.C. Kharas N. Wallace S. Regalado E.S. Hostetler E.M. Sharrief A.Z. Bergametti F. et al. The pleiotropy associated with de novo variants in CHD4, CNOT3, and SETD5 extends to moyamoya angiopathy Anesth. Analg. 2020 22 427 431 10.1038/s41436-019-0639-2
Lai A.Y. Wade P.A. Cancer biology and NuRD: A multifaceted chromatin remodelling complex Nat. Rev. Cancer 2011 11 588 596 10.1038/nrc3091
Clapier C.R. Iwasa J. Cairns B.R. Peterson C.L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes Nat. Rev. Mol. Cell Biol. 2017 18 407 422 10.1038/nrm.2017.26
Watson A.A. Mahajan P. Mertens H.D.T. Deery M.J. Zhang W. Pham P. Du X. Bartke T. Zhang W. Edlich C. et al. The PHD and Chromo Domains Regulate the ATPase Activity of the Human Chromatin Remodeler CHD4 J. Mol. Biol. 2012 422 3 17 10.1016/j.jmb.2012.04.031
Morra R. Lee B.M. Shaw H. Tuma R. Mancini E.J. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4 FEBS Lett. 2012 586 2513 2521 10.1016/j.febslet.2012.06.017
Ramírez J. Dege C. Kutateladze T.G. Hagman J. MBD2 and Multiple Domains of CHD4 Are Required for Transcriptional Repression by Mi-2/NuRD Complexes Mol. Cell. Biol. 2012 32 5078 5088 10.1128/MCB.00819-12
Arends T. Dege C. Bortnick A. Danhorn T. Knapp J.R. Jia H. Harmacek L. Fleenor C.J. Straign D. Walton K. et al. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis Proc. Natl. Acad. Sci. USA 2019 116 10927 10936 10.1073/pnas.1821301116 31085655
Burgold T. Barber M. Kloet S. Cramard J. Gharbi S. Floyd R. Kinoshita M. Ralser M. Vermeulen M. Reynolds N. et al. The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment EMBO J. 2019 38 e100788 10.15252/embj.2018100788 31036553
De Castro R.O. Carbajal A. de Almeida L.P. Goitea V. Griffin C.T. Pezza R.J. Mouse Chd4-NURD is required for neonatal spermatogonia survival and normal gonad development Epigenetics Chromatin 2022 15 16 10.1186/s13072-022-00448-5
Cafe S.L. Skerrett-Byrne D.A. De Oliveira C.S. Nixon B. Oatley M.J. Oatley J.M. Lord T. A regulatory role for CHD4 in maintenance of the spermatogonial stem cell pool Stem Cell Rep. 2021 16 1555 1567 10.1016/j.stemcr.2021.04.003
Li P. Tang J. Yu Z. Jin C. Wang Z. Li M. Zou D. Mang X. Liu J. Lu Y. et al. CHD4 acts as a critical regulator in the survival of spermatogonial stem cells in mice Biol. Reprod. 2022 107 1331 1344 10.1093/biolre/ioac162 35980806
Goodman J.V. Yamada T. Yang Y. Kong L. Wu D.Y. Zhao G. Gabel H.W. Bonni A. The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain Nat. Commun. 2020 11 3419 10.1038/s41467-020-17065-z
Nitarska J. Smith J.G. Sherlock W.T. Hillege M.M. Nott A. Barshop W.D. Vashisht A.A. Wohlschlegel J.A. Mitter R. Riccio A. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development Cell Rep. 2016 17 1683 1698 10.1016/j.celrep.2016.10.022
Gómez-del Arco P. Perdiguero E. Yunes-Leites P.S. Acín-Pérez R. Zeini M. Garcia-Gomez A. Sreenivasan K. Jiménez-Alcázar M. Segalés J. López-Maderuelo D. et al. The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis Cell Metab. 2016 23 881 892 10.1016/j.cmet.2016.04.008
Crosswhite P.L. Podsiadlowska J.J. Curtis C.D. Gao S. Xia L. Srinivasan R.S. Griffin C.T. CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity J. Clin. Investig. 2016 126 2254 2266 10.1172/JCI84652
Ingram K.G. Curtis C.D. Silasi-Mansat R. Lupu F. Griffin C.T. The NuRD Chromatin-Remodeling Enzyme CHD4 Promotes Embryonic Vascular Integrity by Transcriptionally Regulating Extracellular Matrix Proteolysis PLoS Genet. 2013 9 e1004031 10.1371/journal.pgen.1004031 24348274
Farnung L. Ochmann M. Cramer P. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations Elife 2020 9 e56178 10.7554/eLife.56178
Sundaramoorthy R. Hughes A.L. El-Mkami H. Norman D.G. Ferreira H. Owen-Hughes T. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome Elife 2018 7 e35720 10.7554/eLife.35720 30079888
Vandana J.J. Manrique C. Lacko L.A. Chen S. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation Cell Stem Cell 2023 30 571 591 10.1016/j.stem.2023.04.011 37146581
Takahashi T. Organoids for Drug Discovery and Personalized Medicine Annu. Rev. Pharmacol. Toxicol. 2019 59 447 462 10.1146/annurev-pharmtox-010818-021108 30113875
Hu W. Lazar M.A. Modelling metabolic diseases and drug response using stem cells and organoids Nat. Rev. Endocrinol. 2022 18 744 759 10.1038/s41574-022-00733-z
Lancaster M.A. Huch M. Disease modelling in human organoids Dis. Model. Mech. 2019 12 dmm039347 10.1242/dmm.039347
Bose S. Clevers H. Shen X. Promises and challenges of organoid-guided precision medicine Med 2021 2 1011 1026 10.1016/j.medj.2021.08.005
Kim J. Koo B.-K. Knoblich J.A. Human organoids: Model systems for human biology and medicine Nat. Rev. Mol. Cell Biol. 2020 21 571 584 10.1038/s41580-020-0259-3
Giri S. Purushottam M. Viswanath B. Muddashetty R.S. Generation of a FMR1 homozygous knockout human embryonic stem cell line (WAe009-A-16) by CRISPR/Cas9 editing Stem Cell Res. 2019 39 101494 10.1016/j.scr.2019.101494 31280136