Morphology modification; porous clay; adsorbent; natural material valorization; calcination
Abstract :
[en] In this work, a natural kaolinitic clay mineral from Kribi in Cameroon is modified by thermal and acidic treatments. The influence of these treatments on the physicochemical properties of the clays is studied using X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption-desorption measurements, scanning electron microscopy, inductively coupled plasma-atomic emission spectroscopy and thermal analysis. Three calcination temperatures are explored: 600, 700 and 800 °C. The XRD pattern of the untreated clay showed that the natural clay mineral was mostly composed of kaolinite. Calcination at high temperatures allowed the amorphization of the natural kaolinitic clay mineral to obtain metakaolinite. This heat treatment of the natural clay mineral produced disintegration by rupture of the strong hydrogen bonds between the layers of the clay mineral. Heat treatment did not increase the specific surface area of the clay, which stayed around 20-30 m 2 /g. The acid treatment produced a high material texture modification giving microporous materials with a large surface area up to 315 m 2 /g with the sample previously calcined at 800 °C. The microporosity and mesoporosity increase is greater when the clay is calcined at high temperature. The morphology of the samples observed by SEM are modified by the acidic treatment. The initial two-dimensional stacking of particles evolves towards a narrower threedimensional porous structure. These treatments open the way to produce highly porous clay materials that could be used as adsorbent materials for pollutant removal from water.
Disciplines :
Materials science & engineering Chemical engineering
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering ; Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Université du Québec, Québec, Canada
Calberg, Cédric ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Farcy, Antoine ; Université de Liège - ULiège > Chemical engineering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abbassi, H., Abidi, R., Memia, Zayani, B., A short review on the silylated clays-polymer nanocomposites: Synthesis, properties and applications. J. Marocain de Chim. Hétérocyclique Moroccan J. Heterocyclic Chem. J. Mar. Chim. Heterocycl. 20 (2021), 117–134.
Aragaw, T.A., Alene, A.N., A comparative study of acidic, basic, and reactive dyes adsorption from aqueous solution onto kaolin adsorbent: Effect of operating parameters, isotherms, kinetics, and thermodynamics. Emerg. Contam. 8 (2022), 59–74, 10.1016/j.emcon.2022.01.002.
Awwad, A.M., Amer, M.W., Al-aqarbeh, M.M., TiO2-kaolinite nanocomposite prepared from the Jordanian Kaolin clay: Adsorption and thermodynamicsof Pb(II) and Cd(II) ions in aqueous solution. Chem. Int. 6 (2022), 168–178.
Belver, C., Bañares Muñoz, M.A., Vicente, M.A., Chemical activation of a kaolinite under acid and alkaline conditions. Chem. Mater. 14 (2002), 2033–2043, 10.1021/cm0111736.
Bergaya, F., Lagaly, G., Chapter 1 general introduction: Clays, clay minerals, and clay science. Bergaya, F., Theng, B.K.G., Lagaly, G., (eds.) Handbook of Clay Science, 2006, Elsevier, 1–18, 10.1016/S1572-4352(05)01001-9.
Bich, C., Ambroise, J., Péra, J., Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl. Clay Sci. 44 (2009), 194–200, 10.1016/j.clay.2009.01.014.
Braccini Freire, C., Lourencio Dias dos Santos, B., Lobo Filgueiras de Miranda, I., Avellar Rodrigues, M., Soares Lameiras, F., Influence of the kaolinite calcination conditions on the compressive strength of geopolymer. KnE Eng., 2020, 10.18502/keg.v5i4.6790.
Chmielová, M., Weiss, Z., Determination of structural disorder degree using an XRD profile fitting procedure. Application to Czech kaolins. Appl. Clay Sci. 22 (2002), 65–74 www.elsevier.com/locate/clay.
David, M.K., Okoro, U.C., Akpomie, K.G., Okey, C., Oluwasola, H.O., Thermal and hydrothermal alkaline modification of kaolin for the adsorptive removal of lead(II) ions from aqueous solution. SN Appl. Sci., 2, 2020, 10.1007/s42452-020-2621-7.
Dewi, R., Agusnar, H., Alfian, Z., Tamrin, C., Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. J. Phys. Conf. Ser., Institute of Physics Publishing, 2018, 10.1088/1742-6596/1116/4/042010.
Diko, M., Ekosse, G., Ogola, J., Fourier transform infrared spectroscopy and thermal analyses of kaolinitic clays from south africa and Cameroon. Acta Geodyn. et Geomater. 13 (2016), 149–158, 10.13168/AGG.2015.0052.
Djomgoue, P., Njopwouo, D., FT-IR spectroscopy applied for surface clays characterization. J. Surf. Eng. Mater. Adv. Technol. 03 (2013), 275–282, 10.4236/jsemat.2013.34037.
Dong, J., Zhang, J., Biomimetic super anti-wetting coatings from natural materials: Superamphiphobic coatings based on nanoclays. Sci. Rep., 8, 2018, 10.1038/s41598-018-30586-4.
Ebrahimi, A., Haghighi, M., Aghamohammadi, S., Effect of calcination temperature and composition on the spray-dried microencapsulated nanostructured SAPO-34 with kaolin for methanol conversion to ethylene and propylene in fluidized bed reactor. Microporous Mesoporous Mater., 297, 2020, 10.1016/j.micromeso.2020.110046.
Edama, N.A., Sulaiman, A., Ku Hamid, K.H., Rodhi, M.N.M., Musa, M., Rahim, S.N.A., The effect of hydrochloric acid on the surface area, morphology and physico-chemical properties of sayong kaolinite clay. Key Eng Mater, 2014, Trans Tech Publications Ltd, 49–56, 10.4028/www.scientific.net/KEM.594-595.49.
Elimbi, A., Tchakoute, H.K., Njopwouo, D., Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 25 (2011), 2805–2812, 10.1016/j.conbuildmat.2010.12.055.
Fabbri, B., Gualtieri, S., Leonardi, C., Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl. Clay Sci. 73 (2013), 2–10, 10.1016/j.clay.2012.09.019.
Gao, W., Zhao, S., Wu, H., Deligeer, W., Asuha, S., Direct acid activation of kaolinite and its effects on the adsorption of methylene blue. Appl. Clay Sci. 126 (2016), 98–106, 10.1016/j.clay.2016.03.006.
Guerra, D.L., Oliveira, S.P., Silva, R.A.S., Silva, E.M., Batista, A.C., Dielectric properties of organofunctionalized kaolinite clay and application in adsorption mercury cation. Ceram. Int. 38 (2012), 1687–1696, 10.1016/j.ceramint.2011.09.062.
Hai, Y., Li, X., Wu, H., Zhao, S., Deligeer, W., Asuha, S., Modification of acid-activated kaolinite with TiO2 and its use for the removal of azo dyes. Appl. Clay Sci. 114 (2015), 558–567, 10.1016/j.clay.2015.07.010.
Hamdi, N., Srasra, E., Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. J. Environ. Sci. 24 (2012), 617–623, 10.1016/S1001-0742(11)60791-2.
He, H., Tao, Q., Zhu, J., Yuan, P., Shen, W., Yang, S., Silylation of clay mineral surfaces. Appl. Clay Sci. 71 (2013), 15–20, 10.1016/j.clay.2012.09.028.
Jawad, A.H., Abdulhameed, A.S., Kashi, E., Yaseen, Z.M., ALOthman, Z.A., Khan, M.R., Cross-linked chitosan-glyoxal/kaolin clay composite: Parametric optimization for color removal and COD reduction of remazol brilliant blue R dye. J. Polym. Environ. 30 (2022), 164–178, 10.1007/s10924-021-02188-1.
Ji, B., Zhang, W., Rare earth elements (REEs) recovery and porous silica preparation from kaolinite. Powder Technol. 391 (2021), 522–531, 10.1016/j.powtec.2021.06.028.
Jia, X., Cheng, H., Zhou, Y., Zhang, S., Liu, Q., Time-efficient preparation and mechanism of methoxy-grafted kaolinite via acid treatment and heating. Appl. Clay Sci. 174 (2019), 170–177, 10.1016/j.clay.2019.04.001.
Kenne Diffo, B.B., Elimbi, A., Cyr, M., Dika Manga, J., Tchakoute Kouamo, H., Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceramic Soc. 3 (2015), 130–138, 10.1016/j.jascer.2014.12.003.
Kiani, S., Mansouri Zadeh, M., Khodabakhshi, S., Rashidi, A., Moghadasi, J., Newly prepared nano Gamma alumina and its application in enhanced oil recovery: An approach to low-salinity waterflooding. Energy Fuels 30 (2016), 3791–3797, 10.1021/acs.energyfuels.5b03008.
Lambert, J.F., Millman, W.S., Fripiat, J.J., Revisiting kaolinite dehydroxylation: A 29Si and 27Al MAS NMR study. J. Am. Soc. 111 (1989), 3517–3522.
Lenarda, M., Storaro, L., Talon, A., Moretti, E., Riello, P., Solid acid catalysts from clays: Preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions. J. Colloid Interface Sci. 311 (2007), 537–543, 10.1016/j.jcis.2007.03.015.
Liu, S.X., Xue, C., Yang, H., Huang, X.Q., Zou, Y., Ding, Y.N., Li, L., Ren, X.M., Intercalated hybrid of kaolinite with KH2po4 showing high ionic conductivity (∼10-4 s cm-1) at room temperature. Solid State Sci. 74 (2017), 95–100, 10.1016/j.solidstatesciences.2017.10.007.
Mahy, J.G., Lambert, S.D., Léonard, G.L.M., Zubiaur, A., Olu, P.Y., Mahmoud, A., Boschini, F., Heinrichs, B., Towards a large scale aqueous sol–gel synthesis of doped TiO2: Study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. A 329 (2016), 189–202, 10.1016/j.jphotochem.2016.06.029.
Misra, A.J., Basu, A., Ghosh, A., Habeeb, H.R., Tiwari, N., Mishra, A., Lundborg, C.S., Tripathy, S.K., Photocatalytic disinfection of multidrug resistant staphylococcus haemolyticus and Escherichia coli using visible-LED: A photochemical approach to curb nosocomial infection. Environ. Technol. Innov., 27, 2022, 10.1016/j.eti.2022.102502.
Misra, A.J., Das, S., Habeeb Rahman, A.P., Das, B., Jayabalan, R., Behera, S.K., Suar, M., Tamhankar, A.J., Mishra, A., Lundborg, C.S., Tripathy, S.K., Doped ZnO nanoparticles impregnated on kaolinite (clay): A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J. Colloid Interface Sci. 530 (2018), 610–623, 10.1016/j.jcis.2018.07.020.
Nmiri, A., Synthesis and characterization of kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic. J. Mater. Environ. Sci. 8 (2017), 676–690 http://www.jmaterenvironsci.com/.
Nodehi, R., Shayesteh, H., Kelishami, A.R., Enhanced adsorption of congo red using cationic surfactant functionalized zeolite particles. Microchem. J., 153, 2020, 10.1016/j.microc.2019.104281.
Panda, A.K., Mishra, B.G., Mishra, D.K., Singh, R.K., Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf. A Physicochem. Eng. Asp. 363 (2010), 98–104, 10.1016/j.colsurfa.2010.04.022.
Panias, D., Giannopoulou, I.P., Perraki, T., Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 301 (2007), 246–254, 10.1016/j.colsurfa.2006.12.064.
Paredes-Quevedo, L.C., Castellanos, N.J., Carriazo, J.G., Influence of porosity and surface area of a modified kaolinite on the adsorption of basic red 46 (BR-46). Water Air Soil Pollut., 232, 2021, 10.1007/s11270-021-05450-3.
Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F., Opravil, T., The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 204 (2010), 222–227, 10.1016/j.powtec.2010.08.004.
Qtaitat, M.A., Al-Trawneh, I.N., Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy. Spectrochim Acta A Mol. Biomol. Spectrosc. 61 (2005), 1519–1523, 10.1016/j.saa.2004.11.008.
Qu, M., Ma, X., He, J., Feng, J., Liu, S., Yao, Y., Hou, L., Liu, X., Facile selective and diverse fabrication of superhydrophobic, superoleophobic-superhydrophilic and superamphiphobic materials from kaolin. ACS Appl. Mater. Interf. 9 (2017), 1011–1020, 10.1021/acsami.6b10964.
Reli, M., Kočí, K., Matějka, V., Kovář, P., Obalová, L., Effect of calcination temperature and calcination time on the kaolinite/TiO2 composite for photocatalytic reduction of CO2. GeoSci. Eng. 58 (2014), 10–22, 10.2478/v10205-011-0022-2.
Saikia, B.J., Parthasarathy, G., Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 01 (2010), 206–210, 10.4236/jmp.2010.14031.
Selvan, B.K., Thiyagarajan, K., Das, S., Jaya, N., Jabasingh, S.A., Saravanan, P., Rajasimman, M., Vasseghian, Y., Synthesis and characterization of nano zerovalent iron-kaolin clay (nZVI-kaol) composite polyethersulfone (PES) membrane for the efficacious As2O3 removal from potable water samples. Chemosphere, 288, 2022, 10.1016/j.chemosphere.2021.132405.
Shayesteh, H., Rahbar-Kelishami, A., Norouzbeigi, R., Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: Kinetic, equilibrium, and thermodynamic studies. Desalination Water Treat. 57 (2015), 12822–12831, 10.1080/19443994.2015.1054315.
Soleimani, M.A., Naghizadeh, R., Mirhabibi, A.R., Golestanifard, F., Effect of calcination temperature of the kaolin and molar Na2O/SiO2 Activator ratio on physical and microstructural properties of metakaolin based geopolymers. Iran. J. Mater. Sci. Eng. 9 (2012), 43–51.
Tang, W., Zhang, S., Sun, J., Li, H., Liu, X., Gu, X., Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite. Thermochim. Acta. 648 (2017), 1–12, 10.1016/j.tca.2016.12.007.
Tao, Q., Su, L., Frost, R.L., Zhang, D., Chen, M., Shen, W., He, H., Silylation of mechanically ground kaolinite. Clay Miner. 49 (2014), 559–568, 10.1180/claymin.2014.049.4.06.
Tchanang, G., Djangang, C.N., Abi, C.F., Moukouri, D.L.M., Blanchart, P., Synthesis of reactive silica from kaolinitic clay: Effect of process parameters. Appl. Clay Sci., 207, 2021, 10.1016/j.clay.2021.106087.
Thommes, M., Kaneko, K., v. Neimark, A., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87 (2015), 1051–1069, 10.1515/pac-2014-1117.
Tironi, A., Trezza, M.A., Irassar, E.F., Scian, A.N., Thermal treatment of kaolin: Effect on the pozzolanic activity. Procedia Mater. Sci. 1 (2012), 343–350, 10.1016/j.mspro.2012.06.046.
Torres-Luna, J.A., Carriazo, J.G., Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay. Solid State Sci. 88 (2019), 29–35, 10.1016/j.solidstatesciences.2018.12.006.
Vicente-Rodriguez, M.A., Suarez, M., Angel Bafiares-Mufioz, M., de Dios Lopez-Gonzalez, J., Comparative FT-IR study of the removal and structural modifications during acid silicates of octahedral cations treatment of several. Spectrochim. Acta Part A 52 (1996), 1685–1694.
Yahaya, S., Jikan, S.S., Badarulzaman, N.A., Adamu, A.D., Effects of acid treatment on the SEM-EDX characteristics of kaolin clay. Path Sci. 3 (2017), 4001–4005, 10.22178/pos.26-6.
Yans, J., Lithostratigraphie, S.S., Minéralogie et diagenèse des sédiments à faciès wealdien du bassin de Mons (Belgique). Classe Des Sci., Acad. R. de Belgique IX (2007), 1–179.
Zhou, Y., Cheng, H., Wei, C., Zhang, Y., Effect of acid activation on structural evolution and surface charge of different derived kaolinites. Appl. Clay Sci., 203, 2021, 10.1016/j.clay.2021.105997.
Zhou, C., Liang, Y., Gong, Y., Zhou, Q., Chen, Y., Qiu, X., Wang, H., Luo, W., Yan, C., Modes of occurrence of Fe in kaolin from Yunnan China. Ceram. Int. 40 (2014), 14579–14587, 10.1016/j.ceramint.2014.06.042.
Zhou, C.H., Zhao, L.Z., Wang, A.Q., Chen, T.H., He, H.P., Current fundamental and applied research into clay minerals in China. Appl. Clay Sci. 119 (2016), 3–7, 10.1016/j.clay.2015.07.043.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.