MRI; brain; fighter pilots; gravity transitions; neuroplasticity; resting state fMRI
Abstract :
[en] Exposure to altered g-levels causes unusual sensorimotor demands that must be dealt with by the brain. This study aimed to investigate whether fighter pilots, who are exposed to frequent g-level transitions and high g-levels, show differential functional characteristics compared to matched controls, indicative of neuroplasticity. We acquired resting-state functional magnetic resonance imaging data to assess brain functional connectivity (FC) changes with increasing flight experience in pilots and to assess differences in FC between pilots and controls. We performed whole-brain exploratory and region-of-interest (ROI) analyses, with the right parietal operculum 2 (OP2) and the right angular gyrus (AG) as ROIs. Our results show positive correlations with flight experience in the left inferior and right middle frontal gyri, and in the right temporal pole. Negative correlations were observed in primary sensorimotor regions. We found decreased whole-brain functional connectivity of the left inferior frontal gyrus in fighter pilots compared to controls and this cluster showed decreased functional connectivity with the medial superior frontal gyrus. Functional connectivity increased between the right parietal operculum 2 and the left visual cortex, and between the right and left angular gyrus in pilots compared to controls. These findings suggest altered motor, vestibular, and multisensory processing in the brains of fighter pilots, possibly reflecting coping strategies to altered sensorimotor demands during flight. Altered functional connectivity in frontal areas may reflect adaptive cognitive strategies to cope with challenging conditions during flight. These findings provide novel insights into brain functional characteristics of fighter pilots, which may be of interest to humans traveling to space.
Disciplines :
Neurosciences & behavior
Author, co-author :
Radstake, Wilhelmina E; Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, Mol, Belgium.
Jillings, Steven; Laboratory for Equilibrium Investigations and Aerospace, University of Antwerp,
Laureys, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau² ; Coma Science Group, GIGA Consciousness, GIGA Institute, University and University
Demertzi, Athina ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Physiology of Cognition
Sunaert, Stefan; Translational MRI, Department of Imaging and Pathology, KU Leuven and University
Van Ombergen, Angelique; Laboratory for Equilibrium Investigations and Aerospace, University of Antwerp, ; Department of Translational Neurosciences-ENT, University of Antwerp, Antwerp,
Wuyts, Floris L; Laboratory for Equilibrium Investigations and Aerospace, University of Antwerp,
Baumgaertner A. Buccino G. Lange R. Adam M. Binkofski F. (2007). Polymodal conceptual processing of human biological actions in the left inferior frontal lobe. Eur. J. Neurosci. 25 (3), 881–889. 10.1111/j.1460-9568.2007.05346.x
Behzadi Y. Restom K. Joy L. Liu T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37 (1), 90–101. 10.1016/j.neuroimage.2007.04.042
Chang E. F. Kurteff G. Wilson S. M. (2018). Selective interference with syntactic encoding during sentence production by direct electrocortical stimulation of the inferior frontal gyrus. J. Cognitive Neurosci. 30 (3), 411–420. 10.1162/jocn_a_01215
Dalecki M. Bock O. Guardiera S. (2010). Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge. Aviat. Space, Environ. Med. 81 (5), 484–488. 10.3357/asem.2665.2010
Demir A. E. Aydın E. (2021). Vestibular illusions and alterations in aerospace environment. Turkish Archives Otorhinolaryngology 59 (2), 139–149. 10.4274/tao.2021.2021-3-3
Eulenburg P. Eickhoff S. B. (2012). Meta-analytical definition and functional connectivity of the human vestibular cortex. NeuroImage 60 (1), 162–169. 10.1016/j.neuroimage.2011.12.032
Gibb R. Ercoline B. Scharff L. (2011). Spatial disorientation: Decades of pilot fatalities. Aviat. Space, Environ. Med. 82 (7), 717–724. 10.3357/asem.3048.2011
Guardiera S. Bock O. Pongratz H. Krause W. (2007). Isometric force production in experienced fighter pilots during +3 Gz centrifuge acceleration. Aviat. Space, Environ. Med. 78 (11), 1072–1074. 10.3357/asem.2152.2007
Guardiera S. Dalecki M. Bock O. (2010). Stability of simulated flight path control at +3 Gz in a human centrifuge. Aviat. Space, Environ. Med. 81 (4), 394–398. 10.3357/asem.2594.2010
Guedry F. E. Rupert A. R. Reschke M. F. (1998). Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Res. Bull. 47 (5), 475–480. 10.1016/s0361-9230(98)00087-2
Hirnstein M. Bayer U. Ellison A. Hausmann M. (2011). TMS over the left angular gyrus impairs the ability to discriminate left from right. Neuropsychologia 49 (1), 29–33. 10.1016/j.neuropsychologia.2010.10.028
Hupfeld K. E. McGregor H. R. Koppelmans V. Beltran N. E. Kofman I. S. De Dios Y. E. et al. (2022). Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb. Cortex 32 (4), 755–769. 10.1093/cercor/bhab239
Kornilova L. N. Kozlovskaia I. B. (2003). Neurosensory mechanisms of space adaptation syndrome. Hum. Physiol. 29, 527–538. 10.1023/A:1025899413655
Kroger J. K. Sabb F. W. Christina L. Cohen M. S. Holyoak K. J. Cohen M. S. et al. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cereb. Cortex 12 (5), 477–485. 10.1093/cercor/12.5.477
Martuzzi R. Ramani R. Qiu M. Shen X. Papademetris X. Todd Constable R. (2011). A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage 58 (4), 1044–1050. 10.1016/j.neuroimage.2011.06.075
Milham M. P. Banich M. T. Claus E. D. Cohen N. J. (2003). Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. NeuroImage 18 (2), 483–493. 10.1016/s1053-8119(02)00050-2
Oldfield R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9 (1), 97–113. 10.1016/0028-3932(71)90067-4
Olson I. R. Plotzker A. Ezzyat Y. (2007). The enigmatic temporal Pole: A review of findings on social and emotional processing. Brain A J. Neurology 130 (7), 1718–1731. 10.1093/brain/awm052
Owen A. M. Stern C. E. Look R. B. Tracey I. Rosen B. R. Petrides M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc. Natl. Acad. Sci. U. S. A. 95 (13), 7721–7726. 10.1073/pnas.95.13.7721
Park J. Gu B. Kang D. H. Shin Y. W. Choi C. H. Kwon J. S. (2010). Integration of cross-modal emotional information in the human brain: An fMRI study. Cortex; a J. Devoted Study Nerv. Syst. Behav. 46 (2), 161–169. 10.1016/j.cortex.2008.06.008
Pearson-Fuhrhop K. M. Cramer S. C. (2010). Genetic influences on neural plasticity. PM R J. Inj. Funct. Rehabilitation 2 (12), S227–S240. 10.1016/j.pmrj.2010.09.011
Pechenkova E. Nosikova I. Rumshiskaya A. Litvinova L. Rukavishnikov I. Mershina E. et al. (2019). Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front. Physiology 10, 761. 10.3389/fphys.2019.00761
Pelletier A. Bernard C. Dilharreguy B. Helmer C. Le Goff M. Chanraud S. et al. (2017). Patterns of brain atrophy associated with episodic memory and semantic fluency decline in aging. Aging 9 (3), 741–752. 10.18632/aging.101186
Pobric G. Jefferies E. MatthewRalph A. L. (2007). Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proc. Natl. Acad. Sci. U. S. A. 104 (50), 20137–20141. 10.1073/pnas.0707383104
Ralph L. Matthew A. Pobric G. Jefferies E. (2009). Conceptual knowledge is underpinned by the temporal Pole bilaterally: Convergent evidence from rTMS. Cereb. Cortex 19 (4), 832–838. 10.1093/cercor/bhn131
Reschke M. F. Bloomberg J. J. Harm D. L. Paloski W. H. Layne C. McDonald V. (1998). Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res. Brain Res. Rev. 28 (1-2), 102–117. 10.1016/s0165-0173(98)00031-9
Ridderinkhof K. R. Ullsperger M. Crone E. A. Nieuwenhuis S. (2004). The role of the medial frontal cortex in cognitive control. Science 306 (5695), 443–447. 10.1126/science.1100301
Roberts R. E. Anderson E. J. Husain M. Husain M. (2010). Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure. J. Neurosci. Official J. Soc. Neurosci. 30 (50), 17063–17067. 10.1523/JNEUROSCI.4879-10.2010
Rushworth M. F. S. Walton M. E. Kennerley S. W. Bannerman D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends Cognitive Sci. 8 (9), 410–417. 10.1016/j.tics.2004.07.009
Salazar A. P. McGregor H. R. Hupfeld K. E. Beltran N. E. Kofman I. S. De Dios Y. E. et al. (2022). Changes in working memory brain activity and task-based connectivity after long-duration spaceflight. Cereb. Cortex 16, bhac232. 10.1093/cercor/bhac232
Sand D. P. Girgenrath M. Bock O. Pongratz H. (2003). Production of isometric forces during sustained acceleration. Aviat. Space, Environ. Med. 74, 688–697.
Schoenmaekers C. De Laet C. Kornilova L. Glukhikh D. Moore S. MacDougall H. et al. (2022). Ocular counter-roll is less affected in experienced versus novice space crew after long-duration spaceflight. NPJ Microgravity 8 (1), 27. 10.1038/s41526-022-00208-5
Tribukait A. Eiken O. (2012). Flight experience and the perception of pitch angular displacements in a gondola centrifuge. Aviat. Space, Environ. Med. 83 (5), 496–503. 10.3357/asem.3038.2012
Tribukait A. Grönkvist M. Eiken O. (2011). The perception of roll tilt in pilots during a simulated coordinated turn in a gondola centrifuge. Aviat. Space, Environ. Med. 82 (5), 523–530. 10.3357/asem.2898.2011
Van Ombergen A. Heine L. Jillings S. Edward Roberts R. Ben J. Van Rompaey V. et al. (2017a). Altered functional brain connectivity in patients with visually induced dizziness. NeuroImage. Clin. 14, 538–545. 10.1016/j.nicl.2017.02.020
Van Ombergen A. Wuyts F. L. Ben J. Jan S. Vanhevel F. Jillings S. et al. (2017b). Intrinsic functional connectivity reduces after first-time exposure to short-term gravitational alterations induced by parabolic flight. Sci. Rep. 7 (1), 3061. 10.1038/s41598-017-03170-5
Vincent J. L. Itamar Kahn A. Z. Buckner R. L. Raichle M. E. Buckner R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiology 100 (6), 3328–3342. 10.1152/jn.90355.2008
Wang L. Liu X. Guise K. G. Knight R. T. Ghajar J. Fan J. (2010). Effective connectivity of the fronto-parietal network during attentional control. J. Cognitive Neurosci. 22 (3), 543–553. 10.1162/jocn.2009.21210
Young L. R. Oman C. M. Watt D. G. Money K. E. Lichtenberg B. K. (1984). Spatial orientation in weightlessness and readaptation to Earth’s gravity. Science 225 (4658), 205–208. 10.1126/science.6610215