[en] The Far Ultraviolet (FUV) imaging system on board the IMAGE satellite provides a global view of the north auroral region in different spectral channels. The Wideband Imaging Camera (WIC) is sensitive to the N[SUB]2[/SUB] LBH emission and NI emissions produced by both electron and proton precipitations. The SI12 camera images the Lyman-alpha emission due to incident protons only. We compare WIC and SI12 observations with model predictions based on particle measurements from the TED and the MEPED detectors on board NOAA-TIROS spacecraft. Models of the interaction of auroral particles with the atmosphere are used together with the in situ proton and electron flux and characteristic energy data to calculate the auroral brightness at the magnetic footprint of the NOAA-15 and NOAA-16 orbital tracks. The MEPED experiment measures the precipitating particles with energy higher than 30 keV, so that these comparisons include all auroral energies, in contrast to previous comparisons. A satisfactory agreement in morphology and in magnitude is obtained for most satellite overflights. The observed FUV-WIC signal is well modeled if the different spatial resolution of the two sensors is considered and the in situ measurements properly smoothed. The calculated count rate includes contributions from LBH emission, the NI 149.3 nm line, and the OI 135.6 nm line excited by electrons and protons. The proton contribution in WIC can locally dominate the electrons. The comparisons indicate that protons can significantly contribute to the FUV aurora at specific times and places and cannot be systematically neglected. The results confirm the shift of the proton auroral oval equatorward of the electron oval in the dusk sector. We also show that in some regions, especially in the dusk sector, high-energy protons dominate the proton energy flux and account for a large fraction of the Lyman-alpha and other FUV emissions.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Coumans, Valérie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Evans, D. S.
Language :
English
Title :
Electron and proton excitation of the FUV aurora: Simultaneous IMAGE and NOAA observations
Publication date :
01 November 2002
Journal title :
Journal of Geophysical Research. Space Physics
ISSN :
2169-9380
eISSN :
2169-9402
Publisher :
American Geophysical Union (AGU), Washington DC, United States
Ajello, J. M., and D. E. Shemansky, A reexamination of important N 2 cross sections by electron impact with application to the dayglow: The Lyman-Birge-Hopfield band system and N I (119.99 nm), J. Geophys. Res., 90, 9845, 1985.
D. Bilitza, (Ed.), International Reference ionosphere 1990, NSSDC 90-22, Natl. Space Sci. Data Cent., Greenbelt, Md, 1990.
Burch, J. L., Image mission overview, Space Sci. Rev., 91, 1, 2000.
Eastes, R. W., Modeling the N2 Lyman-Birge-Hopfield bands in the day-glow: Including radiative and collisional cascading between the singlet states, J. Geophys. Res., 105, 18,557, 2000.
Eastes, R. W., and A. V. Dentamaro, Collision-induced transitions between the a1Πg, a′ 1∑ u-, and w1Δu states of N 2: Can they affect auroral N2 Lyman-Birge-Hopfield band emissions?, J. Geophys. Res., 101, 26,931, 1996.
Fairfield, D. H., and J. D. Scudder, Polar rain: Solar coronal electrons in the Earth's magnetosphere, J. Geophys. Res., 90, 4055, 1985.
Frey, H. U., S. B. Mende, C. W. Carlson, J.-C. Gérard, B. Hubert, J. Spann, R. Gladstone, and T. J. Immel, The electron and proton aurora as seen by IMAGE-FUV and FAST, Geophys. Res. Lett., 28, 1135, 2001.
Fuller-Rowell, T. J., and D. S. Evans, Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606, 1987.
Gérard, J.-C., B. Hubert, D. V. Bisikalo, and V. I. Shematovich, A model of Lyman-α line profile in the proton aurora, J. Geophys. Res., 105, 795, 2000.
Gérard, J.-C., B. Hubert, M. Meurant, V. Bisikalo, I. Shematovich, H. U. Frey, S. B. Mende, G. R. Gladstone, and C. W. Carlson, Observation of the proton aurora with IMAGE FUV imager and simultaneous ion flux in-situ measurements, J. Geophys. Res., 106, 28,939, 2001.
Hardy, D. A., M. S. Gussenhoven, and D. Brautigam, A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370, 1989.
Hecht, J. H., D. L. McKenzie, A. B. Christensen, D. J. Strickland, J. P. Thayer, and J. Watermann, Simultaneous observations of lower thermospheric composition change during moderate auroral activity from Kangerlussuaq and Narsarsuaq, Greenland, J. Geophys. Res., 105, 27,109, 2000.
Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159, 1991.
Hubert, B., J.-C. Gérard, D. V. Bisikalo, V. I. Shematovich, and S. C. Solomon, The role of proton precipitation in the excitation of the auroral FUV emissions, J. Geophys. Res., 106, 21,475, 2001.
Kanik, I., L. W. Beegle, J. M. Ajello, and S. C. Solomon, Electron-impact excitation/emission and photoabsorption cross sections important in the terrestrial airglow and auroral analysis of rocket and satellite observations, Phys. Chetn. Earth, Part C, 25, 573, 2000.
Liou, K., P. T. Newell, C.-I. Meng, T. Sotirelis, M. Brittnacher, and G. Parks, Source region of 1500 MLT auroral bright spots: Simultaneous Polar UV-images and DMSP particle data, J. Geophys. Res., 104, 24,587, 1999.
Marov, M. Y., V. I. Shematovich, D. V. Bisikalo, and J.-C. Gérard, None-quilibrium Processes in Planetary and Cometary Atmosphere: Theory and Applications, Kluwer Acad., Norwell, Mass., 1997.
Mende, S. B., et al., Far ultraviolet imaging from the IMAGE spacecraft, 1, System design, Space Sci. Rev., 91, 243, 2000.
Mende, S. B., H. U. Frey, M. Lampton, J.-C. Gérard, B. Hubert, S. Fuselier, J. Spann, R. Gladstone, and J. L. Burch, Global observations of proton and electron auroras in a substorm, Geophys. Res. Lett., 28, 1139, 2001.
Østgaard, N., J. Stadsnes, J. Bjordal, R. R. Vondrak, S. A. Cummer, D. L. Chenctte, G. K. Parks, M. J. Brittnacher, and D. L. McKenzie, Global-scale electron precipitation features seen in UV and X rays during substorms, J. Geophys. Res., 104, 10,191, 1999.
Østgaard, N., J. Stadsnes, J. Bjordal, R. R. Vondrak, S. A. Cummer, D. L. Chenette, M. Schultz, and J. G. Pronko, Cause of the localized maximum of X-ray emission in the morning sector: A comparison with electron measurements, J. Geophys. Res., 105, 20,869, 2000.
Robinson, R. M., R. R. Vondrak, J. D. Craven, L. A. Frank, and K. Miller, A comparison of ionospheric conductances and auroral luminosities observed simultaneously with the Chatanika radar and the DE 1 auroral imagers, J. Geophys. Res., 94, 5382, 1989.
Senior, C., J. R. Sharber, J. D. Winningham, O. de la Beaujardière, R. A. Heelis, D. S. Evans, M. Sugiura, and W. R. Hoegy, E and F region study of the evening sector auroral oval: A Chatanika/Dynamics Explorer 2/NOAA 6 comparison, J. Geophys. Res., 92, 2477, 1987.
Solomon, S. C., P. B. Hays, and V. Abreu, The auroral 6300 Å emission: Observation and modeling, J. Geophys. Res., 93, 9867, 1988.
Strickland, D. J., R. E. Daniell Jr., J. R. Jasperse, and B. Basu, Transport-theoretic model for the electron-proton-hydrogen atom aurora, 2, Model results, J. Geophys. Res., 98, 21,533, 1993.