[en] We propose an experimental scheme which allows us to realized approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms return back to their original state, being at the same time cooled down by several orders of magnitude. We give a theoretical description of this effect supported by extensive numerical simulations. The proposed scheme can be implemented with existing experimental setups.
Disciplines :
Physics
Author, co-author :
Martin, John ; Université de Liège - ULiège > Département de physique > Physique des atomes froids
Georgeot, B.; Laboratoire de Physique Théorique, Université de Toulouse III, CNRS, 31062 Toulouse, France
Shepelyansky, D. L.; Laboratoire de Physique Théorique, Université de Toulouse III, CNRS, 31062 Toulouse, France
Language :
English
Title :
Cooling by Time Reversal of Atomic Matter Waves
Publication date :
2008
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, Ridge, United States - New York
T. Gorin, T. Prosen, T.H. Seligman, and M. Znidaric, Phys. Rep. 435, 33 (2006). PRPLCM 0370-1573 10.1016/j.physrep.2006.09.003
Pulsed Magnetic Resonance: NMR, ESR, and Optics: A Recognition of E.L. Hahn, edited by, D.M.S. Bagguley, (Oxford University Press, New York, 1992).
A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995); PRLTAO 0031-9007 10.1103/PhysRevLett.75.4206
J. de Rosny, A. Tourin, and M. Fink, Phys. Rev. Lett. 84, 1693 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.84.1693
G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, Phys. Rev. Lett. 92, 193904 (2004); PRLTAO 0031-9007 10.1103/PhysRevLett.92. 193904
G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007). SCIEAS 0036-8075 10.1126/science.1134824
S. Fishman, in Quantum Chaos: E. Fermi School Course CXIX, edited by, G. Casati, I. Guarneri, and, U. Smilansky, (North-Holland, Amsterdam, 1993), p. 187.
F.L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram, and M.G. Raizen, Phys. Rev. Lett. 75, 4598 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.4598
H. Ammann, R. Gray, I. Shvarchuck, and N. Christensen, Phys. Rev. Lett. 80, 4111 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.80.4111
S. Schlunk, M.B. d'Arcy, S.A. Gardiner, and G.S. Summy, Phys. Rev. Lett. 90, 124102 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.90.124102
J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, and J.C. Garreau, arXiv:0709.4320.
C. Ryu, M.F. Andersen, A. Vaziri, M.B. d'Arcy, J.M. Grossman, K. Helmerson, and W.D. Phillips, Phys. Rev. Lett. 96, 160403 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.160403
G. Behinaein, V. Ramareddy, P. Ahmadi, and G.S. Summy, Phys. Rev. Lett. 97, 244101 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.97.244101
J.F. Kanem, S. Maneshi, M. Partlow, M. Spanner, and A.M. Steinberg, Phys. Rev. Lett. 98, 083004 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.083004
M. Sadgrove, M. Horikoshi, T. Sekimura, and K. Nakagawa, Phys. Rev. Lett. 99, 043002 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.043002