Humans; Aged; Emotions; Amygdala/diagnostic imaging; Magnetic Resonance Imaging; Brain Mapping; Brain/diagnostic imaging; Neuroscience (miscellaneous); Aging; Geriatrics and Gerontology
Abstract :
[en] Basic emotional functions seem well preserved in older adults. However, their reactivity to and recovery from socially negative events remain poorly characterized. To address this, we designed a 'task-rest' paradigm in which 182 participants from two independent experiments underwent functional magnetic resonance imaging while exposed to socio-emotional videos. Experiment 1 (N = 55) validated the task in young and older participants and unveiled age-dependent effects on brain activity and connectivity that predominated in resting periods after (rather than during) negative social scenes. Crucially, emotional elicitation potentiated subsequent resting-state connectivity between default mode network and amygdala exclusively in older adults. Experiment 2 replicated these results in a large older adult cohort (N = 127) and additionally showed that emotion-driven changes in posterior default mode network-amygdala connectivity were associated with anxiety, rumination and negative thoughts. These findings uncover the neural dynamics of empathy-related functions in older adults and help understand its relationship to poor social stress recovery.
Research Center/Unit :
GIGA CRC (Cyclotron Research Center) In vivo Imaging-Aging & Memory - ULiège
Disciplines :
Neurosciences & behavior
Author, co-author :
Baez-Lugo, Sebastian ; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland. sebastian.baezlugo@unige.ch ; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland. sebastian.baezlugo@unige.ch
Deza-Araujo, Yacila I ; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland ; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
Maradan, Christel; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
Collette, Fabienne ; Université de Liège - ULiège > Département de Psychologie ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Aging & Memory
Lutz, Antoine; EDUWELL team, Lyon Neuroscience Research Centre (INSERM U1028, CNRS UMR5292, Lyon 1 University), Lyon, France
Marchant, Natalie L ; Division of Psychiatry, University College London, London, UK
Chételat, Gaël ; Université Normandie, Inserm, Université de Caen-Normandie, Inserm UMR-S U1237, GIP Cyceron, Caen, France
Vuilleumier, Patrik ; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland. patrik.vuilleumier@unige.ch ; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland. patrik.vuilleumier@unige.ch
Klimecki, Olga ; Université de Liège - ULiège > Département de Psychologie > Neuropsychologie ; Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland. olga.klimecki@unige.ch ; Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany. olga.klimecki@unige.ch
Medit-Ageing Research Group
Language :
English
Title :
Exposure to negative socio-emotional events induces sustained alteration of resting-state brain networks in older adults.
H2020 - 667696 - MEDIT-AGEING - Investigating the impact of meditation training on mental health and wellbeing in the ageing population
Funders :
EU - European Union Federal Department of Economic Affairs Education and Research
Funding text :
Experiment 1 was financed by funding from the Secrétariat d'État à la formation, à la recherche et à l’innovation (SEFRI) to P.V. and O.K., under contract no. 15.0336 in the context of the European project ‘Medit-Ageing’. The Age-Well randomized clinical trial (including experiment 2) is part of the Medit-Ageing project and is funded through the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 667696), Institut National de la Santé et de la Recherche Médicale, Région Normandie, and Fondation d’Entreprise MMA des Entrepreneurs du Futur to G.C., the project principal investigator (PI), and O.K., N.L.M., G.C. and A.L, work package leaders (co-PIs). Institut National de la Santé et de la Recherche Médicale (Inserm) is the sponsor. The funders and sponsor had no role in study design, data collection, and analysis, decision to publish or preparation of the manuscript. The authors are grateful to the Cyceron staff members for their help with neuroimaging data acquisition; as well as to the EUCLID team, the sponsor (H. Espérou, Pôle de recherche Clinique Inserm) and to all the participants in this study for their contribution. We acknowledge and thank the Medit-Ageing Research Group members for their contribution. We thank C. Bordas, S. de Cataldo and J. Sachs for their help on the mental thoughts analyses and their dedication during data acquisition. We also thank B. Bonnet and F. Grouiller as the principal staff members of the Brain and Behavior Laboratory in Geneva.Experiment 1 was financed by funding from the Secrétariat d'État à la formation, à la recherche et à l’innovation (SEFRI) to P.V. and O.K., under contract no. 15.0336 in the context of the European project ‘Medit-Ageing’. The Age-Well randomized clinical trial (including experiment 2) is part of the Medit-Ageing project and is funded through the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 667696), Institut National de la Santé et de la Recherche Médicale, Région Normandie, and Fondation d’Entreprise MMA des Entrepreneurs du Futur to G.C., the project principal investigator (PI), and O.K., N.L.M., G.C. and A.L, work package leaders (co-PIs). Institut National de la Santé et de la Recherche Médicale (Inserm) is the sponsor. The funders and sponsor had no role in study design, data collection, and analysis, decision to publish or preparation of the manuscript. The authors are grateful to the Cyceron staff members for their help with neuroimaging data acquisition; as well as to the EUCLID team, the sponsor (H. Espérou, Pôle de recherche Clinique Inserm) and to all the participants in this study for their contribution. We acknowledge and thank the Medit-Ageing Research Group members for their contribution. We thank C. Bordas, S. de Cataldo and J. Sachs for their help on the mental thoughts analyses and their dedication during data acquisition. We also thank B. Bonnet and F. Grouiller as the principal staff members of the Brain and Behavior Laboratory in Geneva.; Federal Department of Economic Affairs, Education and Research, Switzerland | Staatssekretariat für Bildung, Forschung und Innovation
Mather, M. The affective neuroscience of aging. Annu. Rev. Psychol. 10.1146/annurev-psych-122414-033540 (2015).
Reiter, A. M. F., Kanske, P., Eppinger, B. & Li, S.-C. The aging of the social mind—differential effects on components of social understanding. Sci Rep. 7, 11046 (2017). DOI: 10.1038/s41598-017-10669-4
Urry, H. L. & Gross, J. J. Emotion regulation in older age. Curr. Dir. Psychol. Sci. 19, 352–357 (2010). DOI: 10.1177/0963721410388395
Mather, M. & Carstensen, L. L. Aging and motivated cognition: the positivity effect in attention and memory. Trends Cogn. Sci. 9, 496–502 (2005).
Aldao, A., Nolen-Hoeksema, S. & Schweizer, S. Emotion-regulation strategies across psychopathology: a meta-analytic review. Clin. Psychol. Rev. 30, 217–237 (2010). DOI: 10.1016/j.cpr.2009.11.004
Hamilton, J. P., Farmer, M., Fogelman, P. & Gotlib, I. H. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry 78, 224–230 (2015). DOI: 10.1016/j.biopsych.2015.02.020
Kraaij, V., Pruymboom, E. & Garnefski, N. Cognitive coping and depressive symptoms in the elderly: a longitudinal study. Aging Ment. Health 6, 275–281 (2002). DOI: 10.1080/13607860220142387
Terracciano, A. et al. Personality and risk of Alzheimer’s disease: new data and meta-analysis. Alzheimers Dement. 10, 179–186 (2014). DOI: 10.1016/j.jalz.2013.03.002
Marchant, N. L. & Howard, R. J. Cognitive debt and Alzheimer’s disease. J. Alzheimers Dis. 44, 755–770 (2015). DOI: 10.3233/JAD-141515
Marchant, N. L. et al. Repetitive negative thinking is associated with amyloid, tau, and cognitive decline. Alzheimers Dement. 10.1002/alz.12116 (2020).
Jané-Llopis, E. & Gabilondo, A. Mental Health in Older People. Consensus paper. Luxembourg: European Communities (2008).
Kuppens, P., Allen, N. B. & Sheeber, L. B. Emotional inertia and psychological maladjustment. Psychol. Sci. 21, 984–991 (2010). DOI: 10.1177/0956797610372634
Koval, P., Kuppens, P., Allen, N. B. & Sheeber, L. Getting stuck in depression: the roles of rumination and emotional inertia. Cogn. Emot. 26, 1412–1427 (2012). DOI: 10.1080/02699931.2012.667392
Van De Leemput, I. A. et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl Acad. Sci. USA 111, 87–92 (2014). DOI: 10.1073/pnas.1312114110
Pichon, S., Miendlarzewska, E. A., Eryilmaz, H. & Vuilleumier, P. Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity. Soc. Cogn. Affect. Neurosci. 10, 180–190 (2015). DOI: 10.1093/scan/nsu044
Lamke, J. P. et al. The impact of stimulus valence and emotion regulation on sustained brain activation: task–rest switching in emotion. PLoS ONE 9, e93098 (2014).
Eryilmaz, H., Van De Ville, D., Schwartz, S. & Vuilleumier, P. Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach. Neuroimage 54, 2481–2491 (2011). DOI: 10.1016/j.neuroimage.2010.10.021
Pitroda, S., Angstadt, M., McCloskey, M. S., Coccaro, E. F. & Phan, K. L. Emotional experience modulates brain activity during fixation periods between tasks. Neurosci. Lett. 443, 72–76 (2008). DOI: 10.1016/j.neulet.2008.07.050
Waugh, C. E., Hamilton, J. P. & Gotlib, I. H. The neural temporal dynamics of the intensity of emotional experience. Neuroimage 49, 1699–1707 (2010). DOI: 10.1016/j.neuroimage.2009.10.006
Veer, I. M. et al. Beyond acute social stress: increased functional connectivity between amygdala and cortical midline structures. Neuroimage 57, 1534–1541 (2011). DOI: 10.1016/j.neuroimage.2011.05.074
Eryilmaz, H., Van De Ville, D., Schwartz, S. & Vuilleumier, P. Lasting impact of regret and gratification on resting brain activity and its relation to depressive traits. J. Neurosci. 34, 7825–7835 (2014). DOI: 10.1523/JNEUROSCI.0065-14.2014
Waugh, C. E., Hamilton, J. P., Chen, M. C., Joormann, J. & Gotlib, I. H. Neural temporal dynamics of stress in comorbid major depressive disorder and social anxiety disorder. Biol. Mood Anxiety Disord. 2, 11 (2012). DOI: 10.1186/2045-5380-2-11
Northoff, G., Qin, P. & Nakao, T. Rest-stimulus interaction in the brain: a review. Trends Neurosci. 33, 277–284 (2010). DOI: 10.1016/j.tins.2010.02.006
Gaviria, J., Rey, G., Bolton, T., Van De Ville, D. & Vuilleumier, P. Dynamic functional brain networks underlying the temporal inertia of negative emotions. Neuroimage 240, 118377 (2021). DOI: 10.1016/j.neuroimage.2021.118377
Schneider, F. et al. The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures. Neuroscience 157, 120–131 (2008). DOI: 10.1016/j.neuroscience.2008.08.014
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008). DOI: 10.1196/annals.1440.011
LeDoux, J. The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol. 10.1023/A:1025048802629 (2003).
Lamm, C., Decety, J. & Singer, T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54, 2492–2502 (2011). DOI: 10.1016/j.neuroimage.2010.10.014
Meaux, E. & Vuilleumier, P. Emotion Perception and Elicitation. In: Brain Mapping: An Encyclopedic Reference (ed Toga, A. W.) 79–90 (Academic Press, San Diego, CA, USA, 2015).
Kim, M. J. et al. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav. Brain Res. 223, 403–410 (2011). DOI: 10.1016/j.bbr.2011.04.025
Rey, G. et al. Resting-state functional connectivity of emotion regulation networks in euthymic and non-euthymic bipolar disorder patients. Eur. Psychiatry 34, 56–63 (2016). DOI: 10.1016/j.eurpsy.2015.12.005
Carstensen, L. L., Mayr, U., Pasupathi, M. & Nesselroade, J. R. Emotional experience in everyday life across the adult lifespan. J. Pers. Soc. Psychol. 79, 644–655 (2000). DOI: 10.1037/0022-3514.79.4.644
Spreng, R. N. & Schacter, D. L. Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb. Cortex 22, 2610–2621 (2012). DOI: 10.1093/cercor/bhr339
Turner, G. R. & Spreng, R. N. Prefrontal engagement and reduced default network suppression co-occur and are dynamically coupled in older adults: the default-executive coupling hypothesis of aging. J. Cogn. Neurosci. 27, 2462–2476 (2015). DOI: 10.1162/jocn_a_00869
Chen, Y. -C., Chen, C. -C., Decety, J. & Cheng, Y. Aging is associated with changes in the neural circuits underlying empathy. Neurobiol. Aging 35, 827–836 (2014). DOI: 10.1016/j.neurobiolaging.2013.10.080
Tamm, S. et al. The effect of sleep restriction on empathy for pain: an fMRI study in younger and older adults. Sci. Rep. 7, 12236 (2017). DOI: 10.1038/s41598-017-12098-9
Beadle, J. N. & De La Vega, C. E. Impact of aging on empathy: review of psychological and neural mechanisms. Front. Psychiatry 10, 331 (2019). DOI: 10.3389/fpsyt.2019.00331
Sze, J. A., Gyurak, A., Goodkind, M. S. & Levenson, R. W. Greater emotional empathy and prosocial behavior in late life. Emotion 12, 1129–1140 (2012). DOI: 10.1037/a0025011
Fan, Y., Duncan, N. W., de Greck, M. & Northoff, G. Is there a core neural network in empathy? An fMRI-based quantitative meta-analysis. Neurosci. Biobehav. Rev. 35, 903–911 (2011). DOI: 10.1016/j.neubiorev.2010.10.009
Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014). DOI: 10.1016/j.neubiorev.2014.01.009
Krueger, K. R. et al. Social engagement and cognitive function in old age. Exp. Aging Res. 35, 45–60 (2009). DOI: 10.1080/03610730802545028
MacLeod, S., Musich, S., Hawkins, K., Alsgaard, K. & Wicker, E. R. The impact of resilience among older adults. Geriatr. Nurs. 37, 266–272 (2016). DOI: 10.1016/j.gerinurse.2016.02.014
Klimecki, O. M., Leiberg, S., Lamm, C. & Singer, T. Functional neural plasticity and associated changes in positive affect after compassion training. Cereb. Cortex 23, 1552–1561 (2013). DOI: 10.1093/cercor/bhs142
Wancata, J., Alexandrowicz, R., Marquart, B., Weiss, M. & Friedrich, F. The criterion validity of the Geriatric Depression Scale: a systematic review. Acta Psychiatr. Scand. 114, 398–410 (2006). DOI: 10.1111/j.1600-0447.2006.00888.x
Klimecki, O. M., Leiberg, S., Ricard, M. & Singer, T. Differential pattern of functional brain plasticity after compassion and empathy training. Soc. Cogn. Affect. Neurosci. 9, 873–879 (2013). DOI: 10.1093/scan/nst060
Singer, T. & Klimecki, O. M. Empathy and compassion. Curr. Biol. 24, R875–R878 (2014). DOI: 10.1016/j.cub.2014.06.054
Corradi-Dell’Acqua, C., Hofstetter, C. & Vuilleumier, P. Cognitive and affective Theory of Mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex. Soc. Cogn. Affect. Neurosci. 9, 1175–1184 (2014). DOI: 10.1093/scan/nst097
Klimecki, O. M. et al. The impact of meditation on healthy ageing—the current state of knowledge and a roadmap to future directions. Curr. Opin. Psychol. 28, 223–228 (2019). DOI: 10.1016/j.copsyc.2019.01.006
Cacioppo, J. T. & Berntson, G. G. Relationship between attitudes and evaluative space: a critical review, with emphasis on the separability of positive and negative substrates. Psychol. Bull. 115, 401–423 (1994). DOI: 10.1037/0033-2909.115.3.401
Preckel, K., Kanske, P. & Singer, T. On the interaction of social affect and cognition: empathy, compassion and theory of mind. Curr. Opin. Behav. Sci. 19, 1–6 (2018). DOI: 10.1016/j.cobeha.2017.07.010
Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007). DOI: 10.1523/JNEUROSCI.5587-06.2007
Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010). DOI: 10.1007/s00429-010-0262-0
Knutson, B., Katovich, K. & Suri, G. Inferring affect from fMRI data. Trends. Cogn. Sci. 18, 422–428 (2014). DOI: 10.1016/j.tics.2014.04.006
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L. & Hommer, D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12, 3683–3687 (2001). DOI: 10.1097/00001756-200112040-00016
Sander, D., Grafman, J. & Zalla, T. The human amygdala: an evolved system for relevance detection. Rev. Neurosci. 14, 303–316 (2003). DOI: 10.1515/REVNEURO.2003.14.4.303
Riva, F. et al. Age-related differences in the neural correlates of empathy for pleasant and unpleasant touch in a female sample. Neurobiol. Aging 65, 7–17 (2018). DOI: 10.1016/j.neurobiolaging.2017.12.028
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S. & Cabeza, R. Qué PASA? The posterior–anterior shift in aging. Cereb. Cortex 18, 1201–1209 (2008). DOI: 10.1093/cercor/bhm155
Davidson, R. J. Affective style and affective disorders: perspectives from affective neuroscience. Cogn. Emot. 12, 307–330 (1998). DOI: 10.1080/026999398379628
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010). DOI: 10.1016/j.neuron.2010.02.005
Lamm, C. & Singer, T. The role of anterior insular cortex in social emotions. Brain Struct. Funct. 214, 579–591 (2010). DOI: 10.1007/s00429-010-0251-3
Schuyler, B. S. et al. Temporal dynamics of emotional responding: amygdala recovery predicts emotional traits. Soc. Cogn. Affect. Neurosci. 9, 176–181 (2014). DOI: 10.1093/scan/nss131
Makovac, E., Fagioli, S., Rae, C. L., Critchley, H. D. & Ottaviani, C. Can’t get it off my brain: meta-analysis of neuroimaging studies on perseverative cognition. Psychiatry Res. Neuroimaging 295, 111020 (2020). DOI: 10.1016/j.pscychresns.2019.111020
Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007). DOI: 10.1016/j.neuropsychologia.2006.10.016
Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005). DOI: 10.1016/j.neuron.2005.09.025
Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 10.1038/s41583-018-0067-3 (2018).
Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A. & Dolan, R. J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189–195 (2004). DOI: 10.1038/nn1176
Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).
Grimm, S. et al. Segregated neural representation of distinct emotion dimensions in the prefrontal cortex—an fMRI study. Neuroimage 30, 325–340 (2006). DOI: 10.1016/j.neuroimage.2005.09.006
Juchem, C., Nixon, T. W., McIntyre, S., Rothman, D. L. & De Graaf, R. A. Magnetic field homogenization of the human prefrontal cortex with a set of localized electrical coils. Magn. Reson. Med. 63, 171–180 (2010). DOI: 10.1002/mrm.22164
Poisnel, G. et al. The Age‐Well randomized controlled trial of the Medit‐Ageing European project: effect of meditation or foreign language training on brain and mental health in older adults. Alzheimers Dement. 4, 714–723 (2018). DOI: 10.1016/j.trci.2018.10.011
Chételat, G. et al. Effect of an 18-month meditation training on regional brain volume and perfusion in older adults: The Age-Well Randomized Clinical Trial. JAMA Neurol. 10.1001/jamaneurol.2022.3185 (2022).
Davis, M. H. Measuring individual differences in empathy: Evidence for a multidimensional approach. J. Pers. Soc. Psychol. 44, 113–126 (1983). DOI: 10.1037/0022-3514.44.1.113
Sheikh, J. I. Yesavage, J. A. Geriatric Depression Scale (GDS) recent evidence and development of a shorter version. Clin. Gerontol. https://doi.org/10.1300/J018v05n01_09 (1986).
Beck, A. T., Steer, R. A., Ball, R. & Ranieri, W. F. Comparison of Beck Depression Inventories-IA and-II in psychiatric outpatients. J. Pers. Assess. 67, 588–597 (1996). DOI: 10.1207/s15327752jpa6703_13
Spielberger, C. D., Gorsuch, R. L. Lushene, R. State–Trait Anxiety Inventory STAI (Form Y). Redwood City: Mind Garden. https://doi.org/10.1515/9783111677439-035 (1983).
Gross, J. J. & John, O. P. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J. Pers. Soc. Psychol. 85, 348–362 (2003). DOI: 10.1037/0022-3514.85.2.348
Treynore, G. Nolen-Hoeksema, S. Ruminative Responses Scale. Cogn. Ther. Res. https://doi.org/10.1017/CBO9781107415324.004 (2003).
Taylor, W. D. et al. Smaller orbital frontal cortex volumes associated with functional disability in depressed elders. Biol. Psychiatry 53, 144–149 (2003). DOI: 10.1016/S0006-3223(02)01490-7
Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112, 267–277 (2015). DOI: 10.1016/j.neuroimage.2015.02.064
Villain, N. et al. A simple way to improve anatomical mapping of functional brain imaging. J. Neuroimaging 20, 324–333 (2010). DOI: 10.1111/j.1552-6569.2010.00470.x
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012). DOI: 10.1016/j.neuroimage.2011.10.018
Fair, D. A. et al. A method for using blocked and event-related fMRI data to study ‘resting state’ functional connectivity. Neuroimage 35, 396–405 (2007). DOI: 10.1016/j.neuroimage.2006.11.051
Benjamini, Y. Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
Lieberman, M. D. & Cunningham, W. A. Type I and type II error concerns in fMRI research: re-balancing the scale. Soc. Cogn. Affect. Neurosci. 4, 423–428 (2009). DOI: 10.1093/scan/nsp052
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M. & Nichols, T. E. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014). DOI: 10.1016/j.neuroimage.2014.01.060
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007). DOI: 10.3758/BF03193146