Cohort Studies; Humans; Metabolome; Metabolomics/methods; Brain Injuries; Brain Injuries, Traumatic; Metabolomics; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry; Multidisciplinary
Abstract :
[en] Complex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain injury (TBI). Associations between this and systemic metabolism and their potential prognostic value are poorly understood. Here, we aimed to describe the serum metabolome (including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to severity of injury and patient outcome. We performed a comprehensive metabolomics study in a cohort of 716 patients with TBI and non-TBI reference patients (orthopedic, internal medicine, and other neurological patients) from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We identified panels of metabolites specifically associated with TBI severity and patient outcomes. Choline phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins) were inversely associated with TBI severity and were among the strongest predictors of TBI patient outcomes, which was further confirmed in a separate validation dataset of 558 patients. The observed metabolic patterns may reflect different pathophysiological mechanisms, including protective changes of systemic lipid metabolism aiming to maintain lipid homeostasis in the brain.
Disciplines :
Anesthesia & intensive care
Author, co-author :
Thomas, Ilias; School of Medical Sciences, Örebro University, Örebro, Sweden
Dickens, Alex M; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland ; Department of Chemistry, University of Turku, Turku, Finland
Posti, Jussi P ; Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
Czeiter, Endre ; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary ; Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ; MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
Duberg, Daniel; Department of Chemistry, Örebro University, Örebro, Sweden
Sinioja, Tim; Department of Chemistry, Örebro University, Örebro, Sweden
Kråkström, Matilda; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
Retel Helmrich, Isabel R A; Department of Public Health, Center for Medical Decision Making, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
Wang, Kevin K W; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
Maas, Andrew I R ; Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
Steyerberg, Ewout W ; Department of Public Health, Center for Medical Decision Making, Erasmus MC-University Medical Center, Rotterdam, The Netherlands ; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
Menon, David K ; Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
Tenovuo, Olli; Neurocenter, Department of Neurosurgery and Turku Brain Injury Center, Turku University Hospital and University of Turku, Turku, Finland
Hyötyläinen, Tuulia; Department of Chemistry, Örebro University, Örebro, Sweden
Büki, András; School of Medical Sciences, Örebro University, Örebro, Sweden ; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary ; Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
Orešič, Matej ; School of Medical Sciences, Örebro University, Örebro, Sweden. matej.oresic@oru.se ; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. matej.oresic@oru.se
CENTER-TBI was supported by the European Union 7th Framework program (grant no. 602150), with additional project support from OneMind (US), the Hannelore Kohl Foundation (DE), NeuroTrauma Sciences (US), and Integra Neurosciences. The metabolomics study was supported by a grant from Swedish Research Council to M.O. (grant no. 2018-02629). The study was supported by funding from the Academy of Finland to J.P.P. (grant no. 17379), a grant from Government’s Special Financial Transfer tied to academic research in Health Sciences, Finland to J.P.P. (grant no. 11129) a grant from Maire Taponen Foundation to J.P.P. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Daniel Duberg, Lisanna Sinisalu, and Vanja Stefanović for technical assistance in metabolomics analysis and to Dr. Aidan McGlinchey for assistance with language editing. The authors also thank Iftakher Hossain, Janek Frantzén, Mark van Gils, Peter J. Hutchinson, Ari J. Katila, Henna-Riikka Maanpää, Mehrbod Mohammadian, Virginia F. Newcombe, Jussi Tallus and Riikka S.K. Takala (The TBIcare study group).
Majdan, M. et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health 1, e76–e83 (2016). DOI: 10.1016/S2468-2667(16)30017-2
Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G. & Kobusingye, O. C. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22, 341–353 (2007). DOI: 10.3233/NRE-2007-22502
Maas, A. I., Stocchetti, N. & Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741 (2008). DOI: 10.1016/S1474-4422(08)70164-9
Saatman, K. E. et al. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 25, 719–738 (2008). DOI: 10.1089/neu.2008.0586
MRC Crash Trial Collaborators. et al. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 336, 425–429 (2008). DOI: 10.1136/bmj.39461.643438.25
Maas, A. I., Lingsma, H. F. & Roozenbeek, B. Predicting outcome after traumatic brain injury. Handb. Clin. Neurol. 128, 455–474 (2015). DOI: 10.1016/B978-0-444-63521-1.00029-7
Lingsma, H. et al. Prognosis in moderate and severe traumatic brain injury: external validation of the IMPACT models and the role of extracranial injuries. J. Trauma Acute Care Surg. 74, 639–646 (2013). DOI: 10.1097/TA.0b013e31827d602e
Dijkland, S. A. et al. Prognosis in moderate and severe traumatic brain injury: a systematic review of contemporary models and validation studies. J. Neurotrauma 37, 1–13 (2020). DOI: 10.1089/neu.2019.6401
Czeiter, E. et al. Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 56, 102785 (2020). DOI: 10.1016/j.ebiom.2020.102785
Koh, S. X. & Lee, J. K. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 44, 369–385 (2014). DOI: 10.1007/s40279-013-0119-9
Mondello, S. et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J. Neurotrauma 38, 1086–1106 (2018).
Undén, L., Calcagnile, O., Undén, J., Reinstrup, P. & Bazarian, J. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Med. 13, 1–9 (2015). DOI: 10.1186/s12916-015-0533-y
Minkkinen, M. et al. Prospective validation of the scandinavian guidelines for initial management of minimal, mild, and moderate head injuries in adults. J. Neurotrauma 36, 2904–2912 (2019). DOI: 10.1089/neu.2018.6351
Bazarian, J. J. et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 17, 782–789 (2018). DOI: 10.1016/S1474-4422(18)30231-X
Wang, K. K., Kobeissy, F. H., Shakkour, Z. & Tyndall, J. A. Thorough overview of ubiquitin C‐terminal hydrolase‐L1 and glial fibrillary acidic protein as tandem biomarkers recently cleared by US Food and Drug Administration for the evaluation of intracranial injuries among patients with traumatic brain injury. Acute Med. Surg. 8, e622 (2021). DOI: 10.1002/ams2.622
Menon, D. K. et al. Diffusion limited oxygen delivery following head injury. Crit. Care Med. 32, 1384–1390 (2004). DOI: 10.1097/01.CCM.0000127777.16609.08
Timofeev, I. et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134, 484–494 (2011). DOI: 10.1093/brain/awq353
Oresic, M. et al. Human serum metabolites associate with severity and patient outcomes in traumatic brain injury. EBioMedicine 12, 118–126 (2016). DOI: 10.1016/j.ebiom.2016.07.015
Posti, J. P., Dickens, A. M., Orešič, M., Hyötyläinen, T. & Tenovuo, O. Metabolomics profiling as a diagnostic tool in severe traumatic brain injury. Front. Neurol. 8, 398 (2017). DOI: 10.3389/fneur.2017.00398
Jeter, C. B., Hergenroeder, G. W., Ward, N. H. 3rd, Moore, A. N. & Dash, P. K. Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J. Neurotrauma 30, 671–679 (2013). DOI: 10.1089/neu.2012.2491
Dickens, A. M. et al. Serum metabolites associated with computed tomography findings after traumatic brain injury. J. Neurotrauma 35, 2673–2683 (2018). DOI: 10.1089/neu.2017.5272
Thomas, I. et al. Integrative analysis of circulating metabolite profiles and magnetic resonance imaging metrics in patients with traumatic brain injury. Int. J. Mol. Sci. 21, 1395 (2020). DOI: 10.3390/ijms21041395
Huguenard, C. J. C. et al. Plasma lipidomic analyses in cohorts with mTBI and/or PTSD reveal lipids differentially associated with diagnosis and APOE epsilon4 carrier status. Front Physiol. 11, 12 (2020). DOI: 10.3389/fphys.2020.00012
Anthonymuthu, T. S. et al. Detection of brain specific cardiolipins in plasma after experimental pediatric head injury. Exp. Neurol. 316, 63–73 (2019). DOI: 10.1016/j.expneurol.2019.04.007
Forgy, E. W. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. J. Biometrics 21, 768–769 (1965).
Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 64, 479–498 (2002). DOI: 10.1111/1467-9868.00346
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). DOI: 10.1023/A:1010933404324
Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Computational Stat. Data Anal. 52, 2249–2260 (2008). DOI: 10.1016/j.csda.2007.08.015
Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 58, 267–288 (1996).
Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. J. Technometrics 12, 55–67 (1970). DOI: 10.1080/00401706.1970.10488634
Chong, J. et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494 (2018). DOI: 10.1093/nar/gky310
Dijkland, S. A. et al. Outcome prediction after moderate and severe traumatic brain injury: external validation of two established prognostic models in 1742 European patients. J. Neurotrauma 38, 1377–1388 (2020).
Kotronen, A. et al. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52, 684–690 (2009). DOI: 10.1007/s00125-009-1282-2
Garnett, M. R. et al. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123(Pt 10), 2046–2054 (2000). DOI: 10.1093/brain/123.10.2046
Stovell, M. G. et al. Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: current and future applications. Front Neurol. 8, 426 (2017). DOI: 10.3389/fneur.2017.00426
Law, S. H. et al. An updated review of lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 20 (2019).
Dehouck, B. et al. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138, 877–889 (1997). DOI: 10.1083/jcb.138.4.877
Calatayud Maldonado, V., Calatayud Perez, J. B. & Aso Escario, J. Effects of CDP-choline on the recovery of patients with head injury. J. Neurol. Sci. 103, S15–S18 (1991). DOI: 10.1016/0022-510X(91)90003-P
Guseva, M. V., Hopkins, D. M., Scheff, S. W. & Pauly, J. R. Dietary choline supplementation improves behavioral, histological, and neurochemical outcomes in a rat model of traumatic brain injury. J. Neurotrauma 25, 975–983 (2008). DOI: 10.1089/neu.2008.0516
Hartonen, M., Mattila, I., Ruskeepaa, A. L., Oresic, M. & Hyotylainen, T. Characterization of cerebrospinal fluid by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A 1293, 142–149 (2013). DOI: 10.1016/j.chroma.2013.04.005
Glenn, T. C. et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J. Cereb. Blood Flow. Metab. 23, 1239–1250 (2003). DOI: 10.1097/01.WCB.0000089833.23606.7F
Pascual, J. M. et al. Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by (1)H NMR spectroscopy. J. Neurotrauma 24, 944–959 (2007). DOI: 10.1089/neu.2006.0190
Ashwal, S. et al. Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr. Res. 56, 630–638 (2004). DOI: 10.1203/01.PDR.0000139928.60530.7D
Brand, A., Richter-Landsberg, C. & Leibfritz, D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev. Neurosci. 15, 289–298 (1993). DOI: 10.1159/000111347
Kierans, A. S. et al. Myoinositol and glutamate complex neurometabolite abnormality after mild traumatic brain injury. Neurology 82, 521–528 (2014). DOI: 10.1212/WNL.0000000000000105
Harris, J. L. et al. Altered neurochemical profile after traumatic brain injury: 1H-MRS biomarkers of pathological mechanisms. J. Cereb. Blood Flow. Metab. 32, 2122–2134 (2012). DOI: 10.1038/jcbfm.2012.114
Yasmin, A. et al. MRS reveals chronic inflammation in T2w MRI-negative perilesional cortex–a 6-months multimodal imaging follow-up study. Front. Neurosci. 13, 863 (2019). DOI: 10.3389/fnins.2019.00863
Karve, I. P., Taylor, J. M. & Crack, P. J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharm. 173, 692–702 (2016). DOI: 10.1111/bph.13125
Shi, J. et al. Review: traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget 7, 71052–71061 (2016). DOI: 10.18632/oncotarget.11958
Wolahan, S. M. et al. Novel metabolomic comparison of arterial and jugular venous blood in severe adult traumatic brain injury patients and the impact of pentobarbital infusion. J. Neurotrauma 36, 212–221 (2019). DOI: 10.1089/neu.2018.5674
Eiden, M. et al. Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis fluids of traumatic brain injury patients. EBioMedicine 44, 607–617 (2019). DOI: 10.1016/j.ebiom.2019.05.054
Yudkoff, M. Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS. Neurochem Res 42, 10–18 (2017). DOI: 10.1007/s11064-016-2057-z
Kasai, Y., Tachikawa, M., Hirose, S., Akanuma, S. & Hosoya, K. Transport systems of serine at the brain barriers and in brain parenchymal cells. J. Neurochem. 118, 304–313 (2011). DOI: 10.1111/j.1471-4159.2011.07313.x
Bröer, S. & Brookes, N. Transfer of glutamine between astrocytes and neurons. J. Neurochem. 77, 705–719 (2001). DOI: 10.1046/j.1471-4159.2001.00322.x
Tabatabaie, L., Klomp, L. W., Berger, R. & de Koning, T. J. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol. Genet Metab. 99, 256–262 (2010). DOI: 10.1016/j.ymgme.2009.10.012
Ke, C., Pan, C. W., Zhang, Y., Zhu, X. & Zhang, Y. Metabolomics facilitates the discovery of metabolic biomarkers and pathways for ischemic stroke: a systematic review. Metabolomics 15, 152 (2019). DOI: 10.1007/s11306-019-1615-1
Baker, E. W. et al. Scaled traumatic brain injury results in unique metabolomic signatures between gray matter, white matter, and serum in a piglet model. PLoS ONE 13, e0206481 (2018). DOI: 10.1371/journal.pone.0206481
Wolfe, R. R. The 2017 Sir David P Cuthbertson lecture. Amino acids and muscle protein metabolism in critical care. J. Clin. Nutr. 37, 1093–1100 (2018). DOI: 10.1016/j.clnu.2017.12.010
Reith, F. C., Van den Brande, R., Synnot, A., Gruen, R. & Maas, A. I. The reliability of the Glasgow Coma Scale: a systematic review. J. Intensive Care Med. 42, 3–15 (2016). DOI: 10.1007/s00134-015-4124-3
Gaddam, S. S., Buell, T. & Robertson, C. S. Systemic manifestations of traumatic brain injury. Handb. Clin. Neurol. 127, 205–218 (2015). DOI: 10.1016/B978-0-444-52892-6.00014-3
Ma, E. L. et al. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav. Immun. 66, 56–69 (2017). DOI: 10.1016/j.bbi.2017.06.018
Steyerberg, E. W. et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurol. 18, 923–934 (2019). DOI: 10.1016/S1474-4422(19)30232-7
Folch, J., Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957). DOI: 10.1016/S0021-9258(18)64849-5
McGlinchey, A. et al. Prenatal exposure to environmental chemicals modulates serum phospholipids in newborn infants, increasing later risk of type 1 diabetes. bioRxiv https://doi.org/10.1101/588350 (2019).
Castillo, S., Mattila, I., Miettinen, J., Oresic, M. & Hyotylainen, T. Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chem. 83, 3058–3067 (2011). DOI: 10.1021/ac103308x
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Xia, J. & Wishart, D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26, 2342–2344 (2010). DOI: 10.1093/bioinformatics/btq418