Biotope; Potential natural vegetation; Species distribution model; Vegetation dynamics; Species distribution modeling; Ecological Modeling
Abstract :
[en] Modeling biotope distributions is of paramount importance to monitor species habitats and guide conservation and restoration actions to decrease population extinction rates. However, modeling biotopes as independent landscape units, as is current practice, has some limitations. Vegetation communities that define biotopes evolve through different stages and associations until they reach an equilibrium. To consider these temporal dynamics, we developed a modeling approach based on potential natural vegetation (PNV) corresponding to ecological contexts supporting vegetation succession. The assumption made is that modeling PNV better distinguishes biotope ecological niches, improving prediction accuracy. Results of the final prediction map were excellent, with an overall accuracy of 0.95 and a kappa coefficient of 0.91. The proposed method was also compared with a classic biotope model and our approach showed 29% mean improvement in accuracy. Our results produced a good distinction between the different ecological niches of potential natural vegetation. However, some areas of confusion were identified but these are mainly explained by imprecision and incompleteness of the reference biotope dataset and long-term human management. Using potential natural vegetation is therefore recommended for further studies on biotope mapping.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Bourdouxhe, Axel ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aldrich, C., Process variable importance analysis by use of random forests in a shapley regression framework. Minerals, 10, 2020, 420, 10.3390/min10050420.
Álvarez-Martínez, J.M., Jiménez-Alfaro, B., Barquín, J., Ondiviela, B., Recio, M., Silió-Calzada, A., Juanes, J.A., Modelling the area of occupancy of habitat types with remote sensing. Methods Ecol. Evol. 9 (2018), 580–593, 10.1111/2041-210X.12925.
Bah, B.B., Legrain, X., Engels, P., Colinet, G., Bock, L., 2007. Légende de la Carte Numérique des Sols de Wallonie - version 2. Legend of the Digital Soil Map of Wallonia - version 2.
Bede-Fazekas, Á., Somodi, I., The way bioclimatic variables are calculated has impact on potential distribution models. Methods Ecol. Evol. 11 (2020), 1559–1570, 10.1111/2041-210X.13488.
Belgiu, M., Drăguţ, L., Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114 (2016), 24–31, 10.1016/j.isprsjprs.2016.01.011.
Biau, G., Scornet, E., A random forest guided tour. TEST 25 (2016), 197–227, 10.1007/s11749-016-0481-7.
Blasi, C., Filibeck, G., Frondoni, R., Rosati, L., Smiraglia, D., The map of the vegetation series of Italy. Fitosociologia 41 (2004), 21–26.
Bohn, U., Gollub, G., The use and application of the map of the natural vegetation of Europe with particular reference to Germany. Biol. Environ. Proc. R. Ir. Acad. 106B (2006), 199–213.
Bourdouxhe, A., Duflot, R., Radoux, J., Dufrêne, M., Comparison of methods to model species habitat networks for decision-making in nature conservation: the case of the wildcat in southern Belgium. J. Nat. Conserv., 2020.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32, 10.1023/A:1010933404324.
Carte Numérique des Sols de Wallonie - Série [WWW Document], 2015. URL http://geoportail.wallonie.be/catalogue/c5bedf2b-1cac-4231-9d9a-854e0ef2c9ce.html (accessed 2.13.23).
Chakraborty, D., Dobor, L., Zolles, A., Hlásny, T., Schueler, S., High-resolution gridded climate data for Europe based on bias-corrected EURO-CORDEX: the ECLIPS dataset. Geosci. Data J. 8 (2021), 121–131, 10.1002/gdj3.110.
Chen, C., Breiman, L., Using Random Forest to Learn Imbalanced Data. 2004, Univ. Calif. Berkeley.
Chiarucci, A., Araújo, M.B., Decocq, G., Beierkuhnlein, C., Fernández-Palacios, J.M., The concept of potential natural vegetation: an epitaph?. J. Veg. Sci. 21 (2010), 1172–1178, 10.1111/j.1654-1103.2010.01218.x.
De Keersmaeker, L., Rogiers, N., Vandekerkhove, K., De Vos, B., Roelandt, B., Cornelis, J., De Schrijver, A., Onkelinx, T., Thomaes, A., Hermy, M., Verheyen, K., Application of the ancient forest concept to potential natural vegetation mapping in flanders, a strongly altered landscape in Northern Belgium. Folia Geobot. 48 (2013), 137–162, 10.1007/s12224-012-9135-z.
De Troch, R., Termonia, P., Van Schaeybroeck, B., 2020. High-resolution future climate data for species distribution models in Europe. https://doi.org/10.5281/zenodo.3694065.
Delescaille, L.M., Delaitte, S., L'Atlas floristique de Wallonie : où en est-on?. Adoxa 68 (2011), 17–19.
Delescaille, L.-.M., Wibail, L., Claessens, H., Dufrêne, M., Mahy, G., Peeters, A., Sérusiaux, E., Les Habitats d'Intérêt Communautaire de Wallonie. 2021, Publication du Département de l’Étude du Milieu Naturel et Agricole (SPW ARNE), Gembloux Série « Faune – Flore – Habitat ».
Dufrêne, M., Delescaille, L.-.M., 2007. Guide méthodologique pour l'inventaire et la cartographie des habitats et des habitats d'espèces dans le cadre de la réalisation des arrêtés de désignation en Région wallonne.
Dufrêne, M., Delescaille, L.-.M., 2005. La typologie WalEUNIS des biotopes wallons.
Dufrêne, M., Legendre, P., Geographic structure and potential ecological factors in Belgium. J. Biogeogr. 18 (1991), 257–266.
Dufrêne, M., Legendre, P., Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67 (1997), 345–366.
Duvigneaud, P., Classification phytosociologique des tourbières de l'Europe. Bull. Société R. Bot. Belg. Van K. Belg. Bot. Ver. 81 (1949), 58–129.
Ejrnæs, R., Can we trust gradients extracted by Detrended Correspondence Analysis?. J. Veg. Sci. 11 (2000), 565–572, 10.2307/3246586.
Forman, R.T.T., Land Mosaics: The Ecology of Landscapes and Regions. 1995, Cambridge University Press, Cambridge, UK ed.
Gallizia Vuerich, L., Poldini, L., Feoli, E., Model for the potential natural vegetation mapping of Friuli-Venezia Giulia (Ne Italy) and its application for a biogeographic classification of the region. Plant Biosyst. 135 (2001), 319–336.
Genuer, R., Poggi, J.-.M., Tuleau-Malot, C., 2015. VSURF: an R package for variable selection using random forests. R J. 7.
Hall, C.M., The “worthless lands hypothesis” and Australia's national parks and reserves. Aust. Ever Chang. For. Aust. Def. Force Acad. Canberra Aust., 1988, 441–459.
Hearn, S.M., Healey, J.R., McDonald, M.A., Turner, A.J., Wong, J.L.G., Stewart, G.B., The repeatability of vegetation classification and mapping. J. Environ. Manage. 92 (2011), 1174–1184, 10.1016/j.jenvman.2010.11.021.
Hemsing, L.Ø., Bryn, A., Three methods for modelling potential natural vegetation (PNV) compared: a methodological case study from south-central Norway. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 66 (2012), 11–29.
Herbauts, J., Tanghe, M., Relations entre formations superficielles, sols et associations forestières sur la cuesta bajocienne de lorraine belge. l'exemple du bois de la côte à virton-saint-mard. Bull. Société R. Bot. Belg. Bull. Van K. Belg. Bot. Ver. 120 (1987), 93–105.
Hilty, J., Worboys, G.L., Keeley, A., Woodley, S., Lausche, B.J., Locke, H., Carr, M., Pulsford, I., Pittock, J., White, J.W., Theobald, D.M., Levine, J., Reuling, M., Watson, J.E.M., Ament, R., Groves, C., Tabor, G.M., Guidelines For Conserving Connectivity Through Ecological Networks and Corridors. 2020, IUCN.
Horvath, P., Halvorsen, R., Stordal, F., Tallaksen, L.M., Tang, H., Bryn, A., Distribution modelling of vegetation types based on area frame survey data. Appl. Veg. Sci. 22 (2019), 547–560, 10.1111/avsc.12451.
IPBES, 2019. Global Assessment Report On Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany.
Jones, M.E., Bain, G.C., Hamer, R.P., Proft, K.M., Gardiner, R.Z., Dixon, K.J., Kittipalawattanapol, K., Zepeda de Alba, A.L., Ranyard, C.E., Munks, S.A., Barmuta, L.A., Burridge, C.P., Johnson, C.N., Davidson, N.J., Research supporting restoration aiming to make a fragmented landscape ‘functional’ for native wildlife. Ecol. Manag. Restor. 22 (2021), 65–74, 10.1111/emr.12504.
Kuchler, A.W., Problems in classifying and mapping vegetation for ecological regionalization. Ecology 54 (1973), 512–523, 10.2307/1935336.
Landis, J.R., Koch, G.G., An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33 (1977), 363–374, 10.2307/2529786.
Leguédois, S., Party, J.-.P., Dupouey, J.-.L., Gauquelin, T., Gégout, J.-.C., Lecareux, C., Badeau, V., Probst, A., La carte de végétation du CNRS à l’ère du numérique. Cybergeo Eur. J. Geogr., 2011, 10.4000/cybergeo.24688.
Liu, H., Wang, L., Yang, J., Nakagoshi, N., Liang, C., Wang, W., Lv, Y., Predictive modeling of the potential natural vegetation pattern in northeast China. Ecol. Res. 24 (2009), 1313–1321, 10.1007/s11284-009-0616-3.
Löfvenhaft, K., Björn, C., Ihse, M., Biotope patterns in urban areas: a conceptual model integrating biodiversity issues in spatial planning. Landsc. Urban Plan., Fragment. Land Use Plan. Anal. Beyond? 58 (2002), 223–240, 10.1016/S0169-2046(01)00223-7.
Loidi, J., Preserving biodiversity in the European Union: the Habitats Directive and its application in Spain. Plant Biosyst 133 (1999), 99–106.
Loidi, J., Fernández-González, F., Potential natural vegetation: reburying or reboring?. J. Veg. Sci. 23 (2012), 596–604, 10.1111/j.1654-1103.2012.01387.x.
Longcore, T., Noujdina, N., Dixon, P.J., Landscape modeling of the potential natural vegetation of Santa Catalina Island. California. West. North Am. Nat. 78 (2018), 617–632, 10.3398/064.078.0406.
Maggini, R., Lehmann, A., Zimmermann, N.E., Guisan, A., Improving generalized regression analysis for the spatial prediction of forest communities. J. Biogeogr. 33 (2006), 1729–1749, 10.1111/j.1365-2699.2006.01465.x.
Margules, C.R., Stein, J.L., Patterns in the distributions of species and the selection of nature reserves: an example from Eucalyptus forests in South-eastern New South Wales. Biol. Conserv., Austral. Develop. Conserv. Eval. 50 (1989), 219–238, 10.1016/0006-3207(89)90011-6.
Moudrý, V., Keil, P., Cord, A.F., Gábor, L., Lecours, V., Zarzo-Arias, A., Barták, V., Malavasi, M., Rocchini, D., Torresani, M., Gdulová, K., Grattarola, F., Leroy, F., Marchetto, E., Thouverai, E., Prošek, J., Wild, J., Šímová, P., Scale mismatches between predictor and response variables in species distribution modelling: a review of practices for appropriate grain selection. Prog. Phys. Geogr. Earth Environ., 2023, 10.1177/03091333231156362 03091333231156362.
Niering, W.A., Vegetation dynamics (succession and climax) in relation to plant community management. Conserv. Biol. 1 (1987), 287–295, 10.1111/j.1523-1739.1987.tb00049.x.
Noirfalise, A., 1984. Forêts Et Stations Forestières En Belgique, Les Presses Agronomiques. ed. Persée - Portail des revues scientifiques en SHS, Gembloux.
Petit S., Cordier S., Claessens H., Ponette Q., Vincke C., Marchal D., Weissen F., 2017. Fichier écologique des essences.
Poggio, L., de Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E., Rossiter, D., SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7 (2021), 217–240, 10.5194/soil-7-217-2021.
Prach, K., Tichý, L., Lencová, K., Adámek, M., Koutecký, T., Sádlo, J., Bartošová, A., Novák, J., Kovář, P., Jírová, A., Šmilauer, P., Řehounková, K., Does succession run towards potential natural vegetation? An analysis across seres. J. Veg. Sci. 27 (2016), 515–523, 10.1111/jvs.12383.
Probst, P., Wright, M.N., Boulesteix, A.-.L., Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov., 9, 2019, e1301, 10.1002/widm.1301.
Radoux, J., Bourdouxhe, A., Coos, W., Dufrêne, M., Defourny, P., Improving ecotope segmentation by combining topographic and spectral data. Remote Sens., 11, 2019, 354, 10.3390/rs11030354.
Ratner, B., The correlation coefficient: its values range between +1/−1, or do they?. J. Target. Meas. Anal. Mark., 17, 2009, 10.1057/jt.2009.5.
Rees, M., Condit, R., Crawley, M., Pacala, S., Tilman, D., Long-term studies of vegetation dynamics. Science 293 (2001), 650–655, 10.1126/science.1062586.
Reger, B., Häring, T., Ewald, J., The TRM model of potential natural vegetation in mountain forests. Folia Geobot. 49 (2014), 337–359, 10.1007/s12224-013-9158-0.
Relief de la Wallonie - Modèle Numérique de Surface (MNS) 2013-2014 – Hillshade [WWW Document], 2015. URL http://geoportail.wallonie.be/catalogue/4ff6714d-61ae-485f-94e5-e6a2bebdf7ef.html (accessed 2.13.23).
Resasco, J., Meta-analysis on a decade of testing corridor efficacy: what new have we learned?. Curr. Landsc. Ecol. Rep. 4 (2019), 61–69, 10.1007/s40823-019-00041-9.
Santos, J.P., Sobral-Souza, T., Brown, K.S. Jr, Vancine, M.H., Ribeiro, M.C., Freitas, A.V.L., Effects of landscape modification on species richness patterns of fruit-feeding butterflies in Brazilian Atlantic Forest. Divers. Distrib. 26 (2020), 196–208, 10.1111/ddi.13007.
Simensen, T., Horvath, P., Vollering, J., Erikstad, L., Halvorsen, R., Bryn, A., Composite landscape predictors improve distribution models of ecosystem types. Divers. Distrib. 26 (2020), 928–943, 10.1111/ddi.13060.
Somodi, I., Molnár, Z., Czúcz, B., Bede-Fazekas, Á., Bölöni, J., Pásztor, L., Laborczi, A., Zimmermann, N.E., Implementation and application of multiple potential natural vegetation models – a case study of Hungary. J. Veg. Sci. 28 (2017), 1260–1269, 10.1111/jvs.12564.
Stumpel, A.H.P., Kalkhoven, J.T.R., A vegetation map of the Netherlands, based on the relationship between ecotopes and types of potential natural vegetation. van der Maarel, E., Werger, M.J.A., (eds.) Plant Species and Plant Communities, 1978, Springer Netherlands, Dordrecht, 137–147, 10.1007/978-94-009-9987-9_18.
Tuxen, R., Die huetige potentielle naturliche Vegetation als Gegestand der Vegetationskarierung. Angew. Pflanzensozioligie 13 (1956), 5–42.
Venseveren, J.P., Étude phytosociologique de deux transects de la vallée de la Lesse (Belgique). Bull. Société R. Bot. Belg. Bull. Van K. Belg. Bot. Ver. 102 (1969), 149–164.
Woodward, J., The Physical Geography of the Mediterranean. 2009, OUP, Oxford.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.