DOE - United States. Department of Energy AFOSR - Air Force Office of Scientific Research SU - Stanford University ARCS - Achievement Rewards for College Scientists Foundation EPSRC - Engineering and Physical Sciences Research Council
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). DOI: 10.1126/science.1102896
Pai, Y.-Y., Tylan-Tyler, A., Irvin, P. & Levy, J. Physics of SrTiO3-based heterostructures and nanostructures: a review. Rep. Prog. Phys. 81, 036503 (2018). DOI: 10.1088/1361-6633/aa892d
Collignon, C., Lin, X., Rischau, C. W., Fauqué, B. & Behnia, K. Metallicity and superconductivity in doped strontium titanate. Annu. Rev. Condens. Matter Phys. 10, 25–44 (2019). DOI: 10.1146/annurev-conmatphys-031218-013144
Gastiasoro, M. N., Ruhman, J. & Fernandes, R. M. Superconductivity in dilute SrTiO3: a review. Ann. Phys. 6, 168107 (2020). DOI: 10.1016/j.aop.2020.168107
de Leon, N. P. Materials challenges and opportunities for quantum computing hardware. Science 372, 6539 (2021).
Gyenis, A. et al. Moving beyond the transmon: noise-protected superconducting quantum circuits. PRX Quantum 2, 030101 (2021). DOI: 10.1103/PRXQuantum.2.030101
Larsen, T. W. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015). DOI: 10.1103/PhysRevLett.115.127001
De Lange, G. et al. Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015). DOI: 10.1103/PhysRevLett.115.127002
Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018). DOI: 10.1038/s41578-018-0003-1
Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575–594 (2020). DOI: 10.1038/s42254-020-0228-y
Pan, H. & Sarma, S. D. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020). DOI: 10.1103/PhysRevResearch.2.013377
Chen, Y. Z. et al. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. Nat. Mater. 14, 801–806 (2015). DOI: 10.1038/nmat4303
Trier, F. et al. Quantization of Hall resistance at the metallic interface between an oxide insulator and SrTiO3. Phys. Rev. Lett. 117, 096804 (2016). DOI: 10.1103/PhysRevLett.117.096804
Gallagher, P. et al. A high-mobility electronic system at an electrolyte-gated oxide surface. Nat. Commun. 6, 6437 (2015). DOI: 10.1038/ncomms7437
Rubi, K. et al. Aperiodic quantum oscillations in the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. npj Quantum Mater. 5, 9 (2020). DOI: 10.1038/s41535-020-0210-z
Goswami, S., Mulazimoglu, E., Vandersypen, L. M. K. & Caviglia, A. D. Nanoscale electrostatic control of oxide interfaces. Nano Lett. 15, 2627–2632 (2015). DOI: 10.1021/acs.nanolett.5b00216
Monteiro, A. M. R. V. L. et al. Side gate tunable Josephson junctions at the LaAlO3/SrTiO3 interface. Nano Lett. 17, 715–720 (2017). DOI: 10.1021/acs.nanolett.6b03820
Prawiroatmodjo, G. E. D. K. et al. Evidence of weak superconductivity at the room-temperature grown LaAlO3/SrTiO3 interface. Phys. Rev. B 93, 184504 (2016). DOI: 10.1103/PhysRevB.93.184504
Thierschmann, H. et al. Transport regimes of a split gate superconducting quantum point contact in the two-dimensional LaAlO3/SrTiO3 superfluid. Nat. Commun. 9, 2276 (2018). DOI: 10.1038/s41467-018-04657-z
Jouan, A. et al. Quantized conductance in a one-dimensional ballistic oxide nanodevice. Nat. Electron. 3, 201–206 (2020). DOI: 10.1038/s41928-020-0383-2
Bjørlig, A. V. et al. g-factors in LaAlO3/SrTiO3 quantum dots. Phys. Rev. Mater. 4, 122001 (2020). DOI: 10.1103/PhysRevMaterials.4.122001
Ron, A. & Dagan, Y. One-dimensional quantum wire formed at the boundary between two insulating LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 112, 136801 (2014). DOI: 10.1103/PhysRevLett.112.136801
Maniv, E., Ron, A., Goldstein, M., Palevski, A. & Dagan, Y. Tunneling into a quantum confinement created by a single-step nanolithography of conducting oxide interfaces. Phys. Rev. B 94, 045120 (2016). DOI: 10.1103/PhysRevB.94.045120
Stornaiuolo, D. et al. Signatures of unconventional superconductivity in the LaAlO3/SrTiO3 two-dimensional system. Phys. Rev. B 95, 140502 (2017). DOI: 10.1103/PhysRevB.95.140502
Boselli, M. et al. Electronic transport in submicrometric channels at the LaAlO3/SrTiO3 interface. Phys. Rev. B 103, 075431 (2021). DOI: 10.1103/PhysRevB.103.075431
Mikheev, E., Rosen, I. T. & Goldhaber-Gordon, D. Quantized critical supercurrent in SrTiO3-based quantum point contacts. Sci. Adv. 7, eabi6520 (2021). DOI: 10.1126/sciadv.abi6520
Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008). DOI: 10.1038/nmat2136
Annadi, A. et al. Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 nanowires. Nano Lett. 18, 4473–4481 (2018). DOI: 10.1021/acs.nanolett.8b01614
Briggeman, M. et al. Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels. Science 367, 769–772 (2020). DOI: 10.1126/science.aat6467
Cheng, G. et al. Electron pairing without superconductivity. Nature 521, 196–199 (2015). DOI: 10.1038/nature14398
Damanet, F. et al. Spin-orbit-assisted electron pairing in one-dimensional waveguides. Phys. Rev. B 104, 125103 (2021). DOI: 10.1103/PhysRevB.104.125103
Petach, T. A. et al. Disorder from the bulk ionic liquid in electric double layer transistors. ACS Nano 11, 8395–8400 (2017). DOI: 10.1021/acsnano.7b03864
Xie, Y. et al. Quantum longitudinal and Hall transport at the LaAlO3/SrTiO3 interface at low electron densities. Solid State Commun. 197, 25–29 (2014). DOI: 10.1016/j.ssc.2014.08.006
Dolev, M., Heiblum, M., Umansky, V., Stern, A. & Mahalu, D. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008). DOI: 10.1038/nature06855
Radu, I. P. et al. Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum Hall state. Science 320, 899–902 (2008). DOI: 10.1126/science.1157560
Rössler, C. et al. Transport properties of clean quantum point contacts. New J. Phys. 13, 113006 (2011). DOI: 10.1088/1367-2630/13/11/113006
Shabani, J., McFadden, A., Shojaei, B. & Palmstrøm, C. Gating of high-mobility InAs metamorphic heterostructures. Appl. Phys. Lett. 105, 262105 (2014). DOI: 10.1063/1.4905370
Matsuo, S. et al. Magnetic field inducing Zeeman splitting and anomalous conductance reduction of half-integer quantized plateaus in InAs quantum wires. Phys. Rev. B 96, 201404 (2017). DOI: 10.1103/PhysRevB.96.201404
Mittag, C. et al. Gate-defined quantum point contact in an InAs two-dimensional electron gas. Phys. Rev. B 100, 075422 (2019). DOI: 10.1103/PhysRevB.100.075422
Kjærgaard, M. et al. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure. Nat. Commun. 7, 12841 (2016). DOI: 10.1038/ncomms12841
Kjærgaard, M. et al. Transparent semiconductor-superconductor interface and induced gap in an epitaxial heterostructure Josephson junction. Phys. Rev. Appl. 7, 034029 (2017). DOI: 10.1103/PhysRevApplied.7.034029
Drachmann, A. C. C. et al. Proximity effect transfer from NbTi into a semiconductor heterostructure via epitaxial aluminum. Nano Lett. 17, 1200–1203 (2017). DOI: 10.1021/acs.nanolett.6b04964
Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2019). DOI: 10.1038/s41586-019-1068-8
Lee, J. S. et al. Transport studies of Epi-Al/InAs two-dimensional electron gas systems for required building-blocks in topological superconductor networks. Nano Lett. 19, 3083–3090 (2019). DOI: 10.1021/acs.nanolett.9b00494
van Wees, B. J. et al. Quantum ballistic and adiabatic electron transport studied with quantum point contacts. Phys. Rev. B 43, 12431 (1991). DOI: 10.1103/PhysRevB.43.12431
Prawiroatmodjo, G. E. D. K. et al. Transport and excitations in a negative-U quantum dot at the LaAlO3/SrTiO3 interface. Nat. Commun. 8, 395 (2017). DOI: 10.1038/s41467-017-00495-7
Büttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906 (1990). DOI: 10.1103/PhysRevB.41.7906
Scherbakov, A., Bogachek, E. & Landman, U. Quantum electronic transport through three-dimensional microconstrictions with variable shapes. Phys. Rev. B 53, 4054 (1996). DOI: 10.1103/PhysRevB.53.4054
Reyren, N. et al. Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94, 112506 (2009). DOI: 10.1063/1.3100777
Khalsa, G. & MacDonald, A. H. Theory of the SrTiO3 surface state two-dimensional electron gas. Phys. Rev. B 86, 125121 (2012). DOI: 10.1103/PhysRevB.86.125121
Danneau, R. et al. Zeeman splitting in ballistic hole quantum wires. Phys. Rev. Lett. 97, 026403 (2006). DOI: 10.1103/PhysRevLett.97.026403
Briggeman, M. et al. One-dimensional Kronig–Penney superlattices at the LaAlO3/SrTiO3 interface. Nat. Phys. 17, 782–787 (2021).
Božović, I. & Levy, J. Pre-formed Cooper pairs in copper oxides and LaAlO3–SrTiO3 heterostructures. Nat. Phys. 16, 712–717 (2020). DOI: 10.1038/s41567-020-0915-8
Nichele, F. et al. Characterization of spin-orbit interactions of GaAs heavy holes using a quantum point contact. Phys. Rev. Lett. 113, 046801 (2014). DOI: 10.1103/PhysRevLett.113.046801
Kolasiński, K., Mreńca-Kolasińska, A. & Szafran, B. Transconductance and effective Landé factors for quantum point contacts: spin-orbit coupling and interaction effects. Phys. Rev. B 93, 035304 (2016). DOI: 10.1103/PhysRevB.93.035304
Leighton, C. Electrolyte-based ionic control of functional oxides. Nat. Mater. 18, 13–18 (2019). DOI: 10.1038/s41563-018-0246-7
Liu, C. et al. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 371, 716–721 (2021). DOI: 10.1126/science.aba5511
Chen, Z. et al. Electric field control of superconductivity at the LaAlO3/KTaO3 (111) interface. Science 372, 721–724 (2021). DOI: 10.1126/science.abb3848
Caviglia, A. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802 (2010). DOI: 10.1103/PhysRevLett.105.236802
Jalan, B., Stemmer, S., Mack, S. & Allen, S. J. Two-dimensional electron gas in δ-doped SrTiO3. Phys. Rev. B 82, 081103 (2010). DOI: 10.1103/PhysRevB.82.081103
Chikina, A. et al. Band-order anomaly at the γ-Al2O3/SrTiO3 interface drives the electron-mobility boost. ACS Nano 15, 4347–4356 (2021). DOI: 10.1021/acsnano.0c07609
Shalom, M. B., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010). DOI: 10.1103/PhysRevLett.104.126802
Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nat. Commun. 3, 1129 (2012). DOI: 10.1038/ncomms2116
Jouan, A. et al. Multiband Effects in the Superconducting Phase Diagram of Oxide Interfaces. Adv. Mater. Interfaces 9, 2201392 (2022). DOI: 10.1002/admi.202201392
Noad, H. et al. Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3. Phys. Rev. B 94, 174516 (2016). DOI: 10.1103/PhysRevB.94.174516
Hameed, S. et al. Enhanced superconductivity and ferroelectric quantum criticality in plastically deformed strontium titanate. Nat. Mater. 21, 54–61 (2021).
Bert, J. A. et al. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86, 060503 (2012). DOI: 10.1103/PhysRevB.86.060503
Collignon, C. et al. Superfluid density and carrier concentration across a superconducting dome: the case of strontium titanate. Phys. Rev. B 96, 224506 (2017). DOI: 10.1103/PhysRevB.96.224506