malaria; Plasmodium falciparum; DNA methyaltion; methylome; host parasite interactions; TNF
Abstract :
[en] The regulation of immune cell responses to infection is a complex process that involves various molecular mechanisms, including epigenetic regulation. DNA methylation has been shown to play central roles in regulating gene expression and modulating cell response during infection. However, the nature and extent to which DNA methylation is involved in the host immune response in human malaria remains largely unknown. Here, we present a longitudinal study investigating the temporal dynamics of genome-wide in vivo DNA methylation profiles using 189 MethylationEPIC 850 K profiles from 66 children in Burkina Faso, West Africa, sampled three times: before infection, during symptomatic parasitemia, and after malaria treatment. The results revealed major changes in the DNA methylation profiles of children in response to both Plasmodium falciparum infection and malaria treatment, with widespread hypomethylation of CpGs upon infection (82% of 6.8 K differentially methylated regions). We document a remarkable reversal of CpG methylation profiles upon treatment to pre-infection states. These changes implicate divergence in core immune processes, including the regulation of lymphocyte, neutrophil, and myeloid leukocyte function. Integrative DNA methylation-mRNA analysis of a top differentially methylated region overlapping the pro-inflammatory gene TNF implicates DNA methylation of TNF cis regulatory elements in the molecular mechanisms of TNF regulation in human malaria. Our results highlight a central role of epigenetic regulation in mounting the host immune response to P. falciparum infection and in response to malaria treatment.
Disciplines :
Genetics & genetic processes
Author, co-author :
Almojil, Dareen; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Diawara, Aïssatou; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Soulama, Issiaka; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Dieng, Mame Massar ; Université de Liège - ULiège > TERRA Research Centre ; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Manikandan, Vinu; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Sermé, Samuel; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Sombié, Salif; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Diarra, Amidou; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Barry, Aissata; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Coulibaly, Sam; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Sirima, Sodiomon; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou
Idaghdour, Youssef; Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
Language :
English
Title :
Impact of Plasmodium falciparum infection on DNA methylation of circulating immune cells
Abdrabou W. Dieng M. M. Diawara A. Sermé S. S. Almojil D. Sombié S. et al. (2021). Metabolome modulation of the host adaptive immunity in human malaria. Nat. Metab. 3 (7), 1001–1016. 10.1038/s42255-021-00404-9
Aitken E. H. Alemu A. Rogerson S. J. (2018). Neutrophils and malaria. Front. Immunol. 9, 3005. 10.3389/fimmu.2018.03005
Arama C. Quin J. E. Kouriba B. Östlund Farrants A-K. Troye-Blomberg M. Doumbo O. K. (2018). Epigenetics and malaria susceptibility/protection: A missing piece of the puzzle. Front. Immunol. 9, 1733. 10.3389/fimmu.2018.01733
Aryee M. J. Jaffe A. E. Corrada-Bravo H. Ladd-Acosta C. Feinberg A. P. Hansen K. D. et al. (2014). Minfi: A flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30 (10), 1363–1369. 10.1093/bioinformatics/btu049
Batugedara G. Lu X. M. Bunnik E. M. Le Roch K. G. (2017). The role of chromatin structure in gene regulation of the human malaria parasite. Trends Parasitol. 33 (5), 364–377. 10.1016/j.pt.2016.12.004
Bougouma E. C. Tiono A. B. Ouédraogo A. Soulama I. Diarra A. Yaro J-B. et al. (2012). Haemoglobin variants and Plasmodium falciparum malaria in children under five years of age living in a high and seasonal malaria transmission area of Burkina Faso. Malar. J. 11 (1), 154. 10.1186/1475-2875-11-154
Bouyahya A. Mechchate H. Oumeslakht L. Zeouk I. Aboulaghras S. Balahbib A. et al. (2022). The role of epigenetic modifications in human cancers and the use of natural compounds as epidrugs: Mechanistic pathways and pharmacodynamic actions. Biomolecules 12 (3), 367. 10.3390/biom12030367
Cheeseman K. Weitzman J. B. (2015). Host–parasite interactions: An intimate epigenetic relationship. Cell. Microbiol. 17 (8), 1121–1132. 10.1111/cmi.12471
Clark Taane G. Diakite M. Auburn S. Campino S. Fry Andrew E. Green A. et al. (2009). Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African populations. J. Infect. Dis. 199 (4), 569–575. 10.1086/596320
Cortés A. Deitsch K. W. (2017). Malaria epigenetics. Cold Spring Harb. Perspect. Med. 7 (7), a025528. 10.1101/cshperspect.a025528
Cox F. E. (2010). History of the discovery of the malaria parasites and their vectors. Parasit. Vectors 3 (1), 5. 10.1186/1756-3305-3-5
Deng Q. Luo Y. Chang C. Wu H. Ding Y. Xiao R. (2019). The emerging epigenetic role of CD8+T cells in autoimmune diseases: A systematic review. Front. Immunol. 10, 856. 10.3389/fimmu.2019.00856
Dieng M. M. Diawara A. Manikandan V. Tamim El Jarkass H. Sermé S. S. Sombié S. et al. (2020). Integrative genomic analysis reveals mechanisms of immune evasion in P. falciparum malaria. Nat. Commun. 11 (1), 5093. 10.1038/s41467-020-18915-6
Ding Q. Gao Z. Chen K. Zhang Q. Hu S. Zhao L. (2022). Inflammation-related epigenetic modification: The bridge between immune and metabolism in type 2 diabetes. Front. Immunol. 13, 883410. 10.3389/fimmu.2022.883410
Dkhil M. A. Al-Quraishy S. A. Abdel-Baki A-A. S. Delic D. Wunderlich F. (2017). Differential miRNA expression in the liver of balb/c mice protected by vaccination during crisis of Plasmodium chabaudi blood-stage malaria. Front. Microbiol. 7, 2155. 10.3389/fmicb.2016.02155
Dobbs K. R. Crabtree J. N. Dent A. E. (2020). Innate immunity to malaria—the role of monocytes. Immunol. Rev. 293 (1), 8–24. 10.1111/imr.12830
Dobbs K. R. Dent A. E. Embury P. Ogolla S. Koech E. Midem D. et al. (2022). Monocyte epigenetics and innate immunity to malaria: Yet another level of complexity? Int. J. Parasitol. 52 (11), 717–720. 10.1016/j.ijpara.2022.07.001
El-Assaad F. Hempel C. Combes V. Mitchell A. J. Ball H. J. Kurtzhals J. A. L. et al. (2011). Differential MicroRNA expression in experimental cerebral and noncerebral malaria. Infect. Immun. 79 (6), 2379–2384. 10.1128/IAI.01136-10
Feinberg A. P. Tycko B. (2004). The history of cancer epigenetics. Nat. Rev. Cancer 4 (2), 143–153. 10.1038/nrc1279
Frigola J. Solé X. Paz M. F. Moreno V. Esteller M. Capellà G. et al. (2005). Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer. Hum. Mol. Genet. 14 (2), 319–326. 10.1093/hmg/ddi028
Gómez-Díaz E. Jordà M. Peinado M. A. Rivero A. (2012). Epigenetics of host–pathogen interactions: The road ahead and the road behind. Plos Pathog. 8 (11), e1003007. 10.1371/journal.ppat.1003007
Gupta H. Chaudhari S. Rai A. Bhat S. Sahu P. K. Hande M. H. et al. (2017). Genetic and epigenetic changes in host ABCB1 influences malaria susceptibility to Plasmodium falciparum. PLOS ONE 12 (4), e0175702. 10.1371/journal.pone.0175702
Gupta H. Wassmer S. C. (2021). Harnessing the potential of miRNAs in malaria diagnostic and prevention. Front. Cell. Infect. Microbiol. 11, 793954. 10.3389/fcimb.2021.793954
Henrici R. C. Sautter C. L. Bond C. Opoka R. O. Namazzi R. Datta D. et al. (2021). Decreased parasite burden and altered host response in children with sickle cell anemia and severe anemia with malaria. Blood Adv. 5 (22), 4710–4720. 10.1182/bloodadvances.2021004704
Horvath S. Oshima J. Martin G. M. Lu A. T. Quach A. Cohen H. et al. (2018). Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 10 (7), 1758–1775. 10.18632/aging.101508
Houseman E. A. Accomando W. P. Koestler D. C. Christensen B. C. Marsit C. J. Nelson H. H. et al. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinforma. 13 (1), 86. 10.1186/1471-2105-13-86
Idaghdour Y. Quinlan J. Goulet J-P. Berghout J. Gbeha E. Bruat V. et al. (2012). Evidence for additive and interaction effects of host genotype and infection in malaria. Proc. Natl. Acad. Sci. 109 (42), 16786–16793. 10.1073/pnas.1204945109
Jones P. A. (2012). Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13 (7), 484–492. 10.1038/nrg3230
Kaimala S. Kumar C. A. Allouh M. Z. Ansari S. A. Emerald B. S. (2022). Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med. Res. Rev. 42 (3), 1343–1371. 10.1002/med.21878
Khyzha N. Alizada A. Wilson M. D. Fish J. E. (2017). Epigenetics of atherosclerosis: Emerging mechanisms and methods. Trends Mol. Med. 23 (4), 332–347. 10.1016/j.molmed.2017.02.004
Kim M. Costello J. (2017). DNA methylation: An epigenetic mark of cellular memory. Exp. Mol. Med. 49 (4), e322–e. 10.1038/emm.2017.10
Kling T. Wenger A. Carén H. (2020). DNA methylation-based age estimation in pediatric healthy tissues and brain tumors. Aging 12 (21), 21037–21056. 10.18632/aging.202145
Kwiatkowski D. (1990). Tumour necrosis factor, fever and fatality in falciparum malaria. Immunol. Lett. 25 (1-3), 213–216. 10.1016/0165-2478(90)90117-9
Lai A. Y. Mav D. Shah R. Grimm S. A. Phadke D. Hatzi K. et al. (2013). DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation. Genome Res. 23 (12), 2030–2041. 10.1101/gr.155473.113
Laveran A. (1881). Nature parasitaire des accidents de l'impaludisme: Description d'un nouveau parasite trouvé dans le sang des malades atteints de fièvre palustre. J.-B. Baillière. 93, 1–8.
Lee Y-I. Ho J-M. Chen M-S. “Clugo: A clustering algorithm for automated functional annotations based on gene ontology,” in Fifth IEEE International Conference on Data Mining (ICDM'05), Houston, TX, USA, November 27-30, 2005 (IEEE).
Lessard S. Gatof E. S. Beaudoin M. Schupp P. G. Sher F. Ali A. et al. (2017). An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility. J. Clin. Investigation 127 (8), 3065–3074. 10.1172/JCI94378
Lim P. S. Li J. Holloway A. F. Rao S. (2013). Epigenetic regulation of inducible gene expression in the immune system. Immunology 139 (3), 285–293. 10.1111/imm.12100
Liu Y. Aryee M. J. Padyukov L. Fallin M. D. Hesselberg E. Runarsson A. et al. (2013). Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31 (2), 142–147. 10.1038/nbt.2487
Loiseau C. Cooper M. M. Doolan D. L. (2020). Deciphering host immunity to malaria using systems immunology. Immunol. Rev. 293 (1), 115–143. 10.1111/imr.12814
Mackay F. Loetscher H. Stueber D. Gehr G. Lesslauer W. (1993). Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55. J. Exp. Med. 177 (5), 1277–1286. 10.1084/jem.177.5.1277
Mahittikorn A. Mala W. Srisuphanunt M. Masangkay F. R. Kotepui K. U. Wilairatana P. et al. (2022). Tumour necrosis factor-α as a prognostic biomarker of severe malaria: A systematic review and meta-analysis. J. Travel Med. 29 (4), taac053. 10.1093/jtm/taac053
Mallik S. Odom G. J. Gao Z. Gomez L. Chen X. Wang L. (2019). An evaluation of supervised methods for identifying differentially methylated regions in Illumina methylation arrays. Briefings Bioinforma. 20 (6), 2224–2235. 10.1093/bib/bby085
Marr A. K. MacIsaac J. L. Jiang R. Airo A. M. Kobor M. S. McMaster W. R. (2014). Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. Plos Pathog. 10 (10), e1004419. 10.1371/journal.ppat.1004419
McEwen L. M. O’Donnell K. J. McGill M. G. Edgar R. D. Jones M. J. MacIsaac J. L. et al. (2020). The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci. 117 (38), 23329–23335. 10.1073/pnas.1820843116
McGuire W. Hill A. V. S. Allsopp C. E. M. Greenwoodt B. M. (1994). Variation in the TNF-a promoter region associated with susceptibility to cerebral malaria. Nature 371, 508–511.
Monasso G. S. Jaddoe V. W. V. Küpers L. K. Felix J. F. (2021). Epigenetic age acceleration and cardiovascular outcomes in school-age children: The Generation R Study. Clin. Epigenetics 13 (1), 205. 10.1186/s13148-021-01193-4
Netea M. G. Latz E. Mills K. H. G. O'Neill L. A. J. (2015). Innate immune memory: A paradigm shift in understanding host defense. Nat. Immunol. 16 (7), 675–679. 10.1038/ni.3178
Nichol K. Pearson A. C. E. (2002). CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res. 12 (8), 1246–1256. 10.1101/gr.74502
Nisar S. Torres M. Thiam A. Pouvelle B. Rosier F. Gallardo F. et al. (2022). Identification of ATP2B4 regulatory element containing functional genetic variants associated with severe malaria. Int. J. Mol. Sci. 23 (9), 4849. 10.3390/ijms23094849
Nishigaki M. Aoyagi K. Danjoh I. Fukaya M. Yanagihara K. Sakamoto H. et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res. 65 (6), 2115–2124. 10.1158/0008-5472.CAN-04-3340
Obata Y. Furusawa Y. Hase K. (2015). Epigenetic modifications of the immune system in health and disease. Immunol. Cell. Biol. 93 (3), 226–232. 10.1038/icb.2014.114
Pacis A. Mailhot-Léonard F. Tailleux L. Randolph H. E. Yotova V. Dumaine A. et al. (2019). Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proc. Natl. Acad. Sci. 116 (14), 6938–6943. 10.1073/pnas.1814700116
Pacis A. Tailleux L. Morin A. M. Lambourne J. MacIsaac J. L. Yotova V. et al. (2015). Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 25 (12), 1801–1811. 10.1101/gr.192005.115
Pasparakis M. Alexopoulou L. Episkopou V. Kollias G. (1996). Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184 (4), 1397–1411. 10.1084/jem.184.4.1397
Pennini M. E. Pai R. K. Schultz D. C. Boom W. H. Harding C. V. (2006). Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-γ-Induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol. 176 (7), 4323–4330. 10.4049/jimmunol.176.7.4323
Perkins S. L. (2014). Malaria's many mates: Past, present, and future of the systematics of the order haemosporida. J. Parasitol. 100 (1), 11–25. 10.1645/13-362.1
Peters T. J. Buckley M. J. Statham A. L. Pidsley R. Samaras K. V Lord R. et al. (2015). De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 8 (1), 6. 10.1186/1756-8935-8-6
Phipson B. Maksimovic J. Oshlack A. (2016). missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics 32 (2), 286–288. 10.1093/bioinformatics/btv560
Pidsley R. Zotenko E. Peters T. J. Lawrence M. G. Risbridger G. P. Molloy P. et al. (2016). Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17 (1), 208. 10.1186/s13059-016-1066-1
Piotrowski A. Benetkiewicz M. Menzel U. De Ståhl T. D. Mantripragada K. Grigelionis G. et al. (2006). Microarray-based survey of CpG islands identifies concurrent hyper- and hypomethylation patterns in tissues derived from patients with breast cancer. Genes., Chromosomes Cancer 45 (7), 656–667. 10.1002/gcc.20331
Poinar G. (2005). Plasmodium dominicana n. sp. (plasmodiidae: Haemospororida) from tertiary Dominican amber. Syst. Parasitol. 61 (1), 47–52. 10.1007/s11230-004-6354-6
Poulin R. Thomas F. (2008). Epigenetic effects of infection on the phenotype of host offspring: Parasites reaching across host generations. Oikos 117 (3), 331–335. 10.1111/j.2007.0030-1299.16435.x
Rakyan V. K. Beyan H. Down T. A. Hawa M. I. Maslau S. Aden D. et al. (2011). Identification of type 1 diabetes–associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet. 7 (9), e1002300. 10.1371/journal.pgen.1002300
Rusek P. Wala M. Druszczyńska M. Fol M. (2018). Infectious agents as stimuli of trained innate immunity. Int. J. Mol. Sci. 19 (2), 456. 10.3390/ijms19020456
Sabou M. Doderer-Lang C. Leyer C. Konjic A. Kubina S. Lennon S. et al. (2020). Toxoplasma gondii ROP16 kinase silences the cyclin B1 gene promoter by hijacking host cell UHRF1-dependent epigenetic pathways. Cell. Mol. Life Sci. 77 (11), 2141–2156. 10.1007/s00018-019-03267-2
Santini V. Kantarjian H. M. Issa J-P. (2001). Changes in DNA methylation in neoplasia: Pathophysiology and therapeutic implications. Ann. Intern. Med. 134 (7), 573–586. 10.7326/0003-4819-134-7-200104030-00011
Sato N. Maitra A. Fukushima N. (2003). Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 63 (14), 4158–4166.
Sato S. (2021). Plasmodium—A brief introduction to the parasites causing human malaria and their basic biology. J. Physiological Anthropol. 40 (1), 1. 10.1186/s40101-020-00251-9
Schrum J. E. Crabtree J. N. Dobbs K. R. Kiritsy M. C. Reed G. W. Gazzinelli R. T. et al. (2018). Cutting edge: Plasmodium falciparum induces trained innate immunity. J. Immunol. 200 (4), 1243–1248. 10.4049/jimmunol.1701010
Sellars M. Huh J. R. Day K. Issuree P. D. Galan C. Gobeil S. et al. (2015). Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T cell lineages. Nat. Immunol. 16 (7), 746–754. 10.1038/ni.3198
Shannon P. Markiel A. Ozier O. Baliga N. S. Wang J. T. Ramage D. et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11), 2498–2504. 10.1101/gr.1239303
Silveira E. L. V. Dominguez M. R. Soares I. S. (2018). To B or not to B: Understanding B cell responses in the development of malaria infection. Front. Immunol. 9, 2961. 10.3389/fimmu.2018.02961
Somineni H. K. Venkateswaran S. Kilaru V. Marigorta U. M. Mo A. Okou D. T. et al. (2019). Blood-Derived DNA methylation signatures of Crohn's disease and severity of intestinal inflammation. Gastroenterology 156 (8), 2254–2265. 10.1053/j.gastro.2019.01.270
Soon M. S. F. Haque A. (2018). Recent insights into CD4+ Th cell differentiation in malaria. J. Immunol. 200 (6), 1965–1975. 10.4049/jimmunol.1701316
Stern E. N. Lessard S. Schupp P. G. Sher F. Lettre G. Bauer D. E. (2016). An essential erythroid-specific enhancer of ATP2B4 associated with red blood cell traits and malaria susceptibility. Blood 128 (22), 1250. 10.1182/blood.v128.22.1250.1250
Studniberg S. I. Ioannidis L. J. Utami R. A. S. Trianty L. Liao Y. Abeysekera W. et al. (2022). Molecular profiling reveals features of clinical immunity and immunosuppression in asymptomatic P. falciparum malaria. Mol. Syst. Biol. 18 (4), e10824. 10.15252/msb.202110824
Sun S. Barreiro L. B. (2020). The epigenetically-encoded memory of the innate immune system. Curr. Opin. Immunol. 65, 7–13. 10.1016/j.coi.2020.02.002
Sun T. Chakrabarti C. (1985). Schizonts, merozoites, and phagocytosis in falciparum malaria. Ann. Clin. Lab. Sci. 15 (6), 465–469.
Tecchio C. Cassatella M. A. (2016). Neutrophil-derived chemokines on the road to immunity. Seminars Immunol. 28 (2), 119–128. 10.1016/j.smim.2016.04.003
Tiono A. B. Guelbeogo M. W. Sagnon N. F. Nébié I. Sirima S. B. Mukhopadhyay A. et al. (2013). Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: Results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study. BMC Infect. Dis. 13 (1), 535. 10.1186/1471-2334-13-535
Uchechukwu C. Priscella C. E. Egondu I. Florence O. (2017). The role of myeloid cells in immunity to malaria: A review. J. Clin. Cell. Immunol. 8 (4), 1000519. 10.4172/2155-9899.1000519
Wang H. Lou D. Wang Z. (2019). Crosstalk of genetic variants, allele-specific DNA methylation, and environmental factors for complex disease risk. Front. Genet. 9, 695. 10.3389/fgene.2018.00695
Wenzel M. A. Piertney S. B. (2014). Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica). Mol. Ecol. 23 (17), 4256–4273. 10.1111/mec.12833
WHO (2022). World malaria report 2022. Geneva: WHO.
Wöhrle D. Salat U. Hameister H. Vogel W. Steinbach P. (2001). Demethylation, reactivation, and destabilization of human fragile X full-mutation alleles in mouse embryocarcinoma cells. Am. J. Hum. Genet. 69 (3), 504–515. 10.1086/322739
Wu X. Chen W. Lin F. Huang Q. Zhong J. Gao H. et al. (2019). DNA methylation profile is a quantitative measure of biological aging in children. Aging 11 (22), 10031–10051. 10.18632/aging.102399
Zhang Z. Butler R. Koestler D. C. Bell-Glenn S. Warrier G. Molinaro A. M. et al. (2022). Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages. Clin. Epigenetics 14 (1), 173. 10.1186/s13148-022-01399-0