[en] The high mortality upon enteric virus infection in piglets causes huge economic losses. To control these infections, potential causes for this high susceptibility for enteric virus infections in younger piglets were analyzed by comparing the intestinal barrier between 1-week, 2-week and 4-week-old piglets. In this study, histological staining was used to analyze morphological differences in intestinal villi, real-time qPCR was performed to assess mRNA expression levels of genes that were related to viral infection and differentiation of immune cells, and flow cytometry was utilized to measure the frequencies of T cells. According to the results obtained, 1-week-old piglets have intestinal villi with shallower crypts, less well developed epithelial cells and a more immature immune system compared to older pigs. Moreover, high amounts of enteric virus invasion-assisting proteins but low amounts of resistant proteins in 1-week piglets could also be a reason for the high susceptibility of 1-week-old piglets.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Yang, Shanshan ✱; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China, Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
Yang, Ning ✱; Université de Liège - ULiège > TERRA Research Centre
Huang, Xin; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
Li, Yang; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China, Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium
Liu, Guo; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
Jansen, Christine A; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
Savelkoul, Huub F J; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
Liu, Guangliang ; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China. Electronic address: LiuGuangliang01@caas.cn
✱ These authors have contributed equally to this work.
Language :
English
Title :
Pigs' intestinal barrier function is more refined with aging.
This work was supported by the National Natural Science Foundation of China (31972689), WUR-CAAS joint Ph.D. Program and ULg-CAAS joint Ph.D. Program.This work was supported by the National Natural Science Foundation of China ( 31972689 ), WUR-CAAS joint Ph.D. Program and ULg-CAAS joint Ph.D. Program.
Akdis, M., Aab, A., Altunbulakli, C., Azkur, K., Costa, R.A., Crameri, R., Duan, S., Eiwegger, T., Eljaszewicz, A., Ferstl, R., Frei, R., Garbani, M., Globinska, A., Hess, L., Huitema, C., Kubo, T., Komlosi, Z., Konieczna, P., Kovacs, N., Kucuksezer, U.C., Meyer, N., Morita, H., Olzhausen, J., O'Mahony, L., Pezer, M., Prati, M., Rebane, A., Rhyner, C., Rinaldi, A., Sokolowska, M., Stanic, B., Sugita, K., Treis, A., van de Veen, W., Wanke, K., Wawrzyniak, M., Wawrzyniak, P., Wirz, O.F., Zakzuk, J.S., Akdis, C.A., Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 138 (2016), 984–1010, 10.1016/j.jaci.2016.06.033.
Chepngeno, J., Diaz, A., Paim, F.C., Saif, L.J., Vlasova, A.N., Rotavirus C: prevalence in suckling piglets and development of virus-like particles to assess the influence of maternal immunity on the disease development. Vet. Res., 50, 2019, 84, 10.1186/s13567-019-0705-4.
Decker, T., Stockinger, S., Karaghiosoff, M., Muller, M., Kovarik, P., IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest. 109 (2002), 1271–1277, 10.1172/JCI15770.
Ding, G., Fu, Y., Li, B., Chen, J., Wang, J., Yin, B., Sha, W., Liu, G., Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound. Emerg. Dis. 67 (2020), 678–685, 10.1111/tbed.13385.
Ettinger, R., Kuchen, S., Lipsky, P.E., The role of IL-21 in regulating B-cell function in health and disease. Immunol. Rev. 223 (2008), 60–86, 10.1111/j.1600-065X.2008.00631.x.
Gebert, A., Rothkotter, H.J., Pabst, R., M cells in Peyer's patches of the intestine. Int. Rev. Cytol. 167 (1996), 91–159, 10.1016/s0074-7696(08)61346-7.
Hansson, G.C., Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 15 (2012), 57–62, 10.1016/j.mib.2011.11.002.
Hou, Q., Ye, L., Liu, H., Huang, L., Yang, Q., Turner, J.R., Yu, Q., Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22. Cell Death Differ. 25 (2018), 1657–1670, 10.1038/s41418-018-0070-2.
Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., Chirakkal, H., Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Sci. 92 (2013), 370–374, 10.3382/ps.2012-02528.
Jung, K., Saif, L.J., Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet. J. 204 (2015), 134–143, 10.1016/j.tvjl.2015.02.017.
Katsuda, K., Kohmoto, M., Kawashima, K., Tsunemitsu, H., Frequency of enteropathogen detection in suckling and weaned pigs with diarrhea in Japan. J. Vet. Diagn. Invest. 18 (2006), 350–354, 10.1177/104063870601800405.
Kim, Y.S., Ho, S.B., Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 12 (2010), 319–330, 10.1007/s11894-010-0131-2.
Kim, J.J., Khan, W.I., Goblet cells and mucins: role in innate defense in enteric infections. Pathogens 2 (2013), 55–70, 10.3390/pathogens2010055.
Kober, M.M., Bowe, W.P., The effect of probiotics on immune regulation, acne, and photoaging. Int. J. Womens Dermatol. 1 (2015), 85–89, 10.1016/j.ijwd.2015.02.001.
Koonpaew, S., Teeravechyan, S., Frantz, P.N., Chailangkarn, T., Jongkaewwattana, A., PEDV and PDCoV pathogenesis: the interplay between host innate immune responses and porcine enteric coronaviruses. Front. Vet. Sci., 6, 2019, 10.3389/fvets.2019.00034 ARTN 34.
Lee, S.H., Kwon, J.Y., Kim, S.Y., Jung, K., Cho, M.L., Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci. Rep., 7, 2017, 10133, 10.1038/s41598-017-09767-0.
Li, L., Fu, F., Xue, M., Chen, W., Liu, J., Shi, H., Chen, J., Bu, Z., Feng, L., Liu, P., IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha. Antivir. Res. 140 (2017), 76–82, 10.1016/j.antiviral.2017.01.012.
Li, B., Jones, L.L., Geiger, T.L., IL-6 promotes T cell proliferation and expansion under inflammatory conditions in association with low-level RORgammat expression. J. Immunol. 201 (2018), 2934–2946, 10.4049/jimmunol.1800016.
Liu, Q., Wang, H.Y., Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Vet. Res. Commun. 45 (2021), 75–86, 10.1007/s11259-021-09808-0.
Liu, J., Walker, N.M., Ootani, A., Strubberg, A.M., Clarke, L.L., Defective goblet cell exocytosis contributes to murine cystic fibrosis-associated intestinal disease. J. Clin. Invest. 125 (2015), 1056–1068, 10.1172/JCI73193.
Liu, C., Tang, J., Ma, Y., Liang, X., Yang, Y., Peng, G., Qi, Q., Jiang, S., Li, J., Du, L., Li, F., Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J. Virol. 89 (2015), 6121–6125, 10.1128/JVI.00430-15.
Luo, X.L., Guo, L.J., Zhang, J., Xu, Y.F., Gu, W.H., Feng, L., Wang, Y., Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor. J. Virol., 91, 2017, 10.1128/JVI.00202-17 ARTN e00202-17 UNSP e00202-17.
Malek, T.R., The main function of IL-2 is to promote the development of T regulatory cells. J. Leukoc. Biol. 74 (2003), 961–965, 10.1189/jlb.0603272.
McElroy, S.J., Prince, L.S., Weitkamp, J.H., Reese, J., Slaughter, J.C., Polk, D.B., Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol. 301 (2011), G656–G666, 10.1152/ajpgi.00550.2010.
Nhieu, G.T., Sansonetti, P.J., Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2 (1999), 51–55, 10.1016/s1369-5274(99)80009-5.
Nowacki, W., Cederblad, B., Renard, C., La Bonnardiere, C., Charley, B., Age-related increase of porcine natural interferon alpha producing cell frequency and of interferon yield per cell. Vet. Immunol. Immunopathol. 37 (1993), 113–122, 10.1016/0165-2427(93)90059-d.
Pan, Y., Tian, X., Qin, P., Wang, B., Zhao, P., Yang, Y.L., Wang, L., Wang, D., Song, Y., Zhang, X., Huang, Y.W., Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China. Vet. Microbiol. 211 (2017), 15–21, 10.1016/j.vetmic.2017.09.020.
Perkins, D.J., Vogel, S.N., Space and time: new considerations about the relationship between Toll-like receptors (TLRs) and type I interferons (IFNs). Cytokine 74 (2015), 171–174, 10.1016/j.cyto.2015.03.001.
Reboldi, A., Cyster, J.G., Peyer's patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271 (2016), 230–245, 10.1111/imr.12400.
Richmond, J., Tuzova, M., Cruikshank, W., Center, D., Regulation of cellular processes by interleukin-16 in homeostasis and cancer. J. Cell. Physiol. 229 (2014), 139–147, 10.1002/jcp.24441.
Sales Gil, R., Vagnarelli, P., Ki-67: more hidden behind a 'classic proliferation marker. Trends Biochem. Sci. 43 (2018), 747–748, 10.1016/j.tibs.2018.08.004.
Sinkora, M., Stepanova, K., Butler, J.E., Francis, D., Santiago-Mateo, K., Potockova, H., Karova, K., Sinkorova, J., Ileal Peyer's patches are not necessary for systemic B cell development and maintenance and do not contribute significantly to the overall B cell pool in swine. J. Immunol. 187 (2011), 5150–5161, 10.4049/jimmunol.1101879.
Sinkora, M., Stepanova, K., Sinkorova, J., Different anti-CD21 antibodies can be used to discriminate developmentally and functionally different subsets of B lymphocytes in circulation of pigs. Dev. Comp. Immunol. 39 (2013), 409–418, 10.1016/j.dci.2012.10.010.
Tivey, D.R., Smith, M.W., Cytochemical analysis of single villus peptidase activities in pig intestine during neonatal development. Histochem. J. 21 (1989), 601–608, 10.1007/BF01753361.
Turner, J.R., Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9 (2009), 799–809, 10.1038/nri2653.
Ubeda, C., Djukovic, A., Isaac, S., Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol., 6, 2017, e128, 10.1038/cti.2017.2.
Vijay, K., Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int. Immunopharm. 59 (2018), 391–412, 10.1016/j.intimp.2018.03.002.
Walter, J., Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74 (2008), 4985–4996, 10.1128/AEM.00753-08.
Wang, L., Zhu, F., Yang, H., Li, J., Li, Y., Ding, X., Xiong, X., Ji, F., Zhou, H., Yin, Y., Epidermal growth factor improves intestinal morphology by stimulating proliferation and differentiation of enterocytes and mTOR signaling pathway in weaning piglets. Sci. China Life Sci., 2019, 10.1007/s11427-018-9519-6.
Westrom, B., Arevalo Sureda, E., Pierzynowska, K., Pierzynowski, S.G., Perez-Cano, F.J., The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol., 11, 2020, 1153, 10.3389/fimmu.2020.01153.
Yang, Y.L., Yu, J.Q., Huang, Y.W., Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): an update three years after its discovery. Virus Res., 285, 2020, 198024, 10.1016/j.virusres.2020.198024.