[en] Intestinal stem cells (ISCs) play an important role in tissue repair after injury. A recent report delineates the effect of transmissible gastroenteritis virus (TGEV) infection on the small intestine of recovered pigs. However, the mechanism behind the epithelium regeneration upon TGEV infection remains unclear. To address this, we established a TGEV infection model based on the porcine intestinal organoid monolayer. The results illustrated that the porcine intestinal organoid monolayer was susceptible to TGEV. In addition, the TGEV infection initiated the interferon and inflammatory responses following the loss of absorptive enterocytes and goblet cells. However, TGEV infection did not disturb epithelial integrity but induced the proliferation of ISCs. Furthermore, TGEV infection activated the Wnt/β-catenin pathway by upregulating the accumulation and nuclear translocation of β-catenin, as well as promoting the expression of Wnt target genes, such as C-myc, Cyclin D1, Mmp7, Lgr5, and Sox9, which were associated with the self-renewal of ISCs. Collectively, these data demonstrated that the TGEV infection activated the Wnt/β-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. IMPORTANCE The intestinal epithelium is a physical barrier to enteric viruses and commensal bacteria. It plays an essential role in maintaining the balance between the host and intestinal microenvironment. In addition, intestinal stem cells (ISCs) are responsible for tissue repair after injury. Therefore, prompt self-renewal of intestinal epithelium will facilitate the rebuilding of the physical barrier and maintain gut health. In the manuscript, we found that the transmissible gastroenteritis virus (TGEV) infection did not disturb epithelial integrity but induced the proliferation of ISCs and facilitated epithelium regeneration. Detailed mechanism investigations revealed that the TGEV infection activated the Wnt/β-catenin pathway to promote the self-renewal of ISCs and resulted in intestinal epithelium regeneration. These findings will contribute to understanding the mechanism of intestinal epithelial regeneration and reparation upon viral infection.
Disciplines :
Biotechnology
Author, co-author :
Yang, Ning ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China
Zhang, Yunhang ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China
Fu, Yuguang; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China
Li, Yang ; Université de Liège - ULiège > Université de Liège - ULiège ; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China
Yang, Shanshan; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China ; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, The Netherlands
Chen, Jianing; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China
Liu, Guangliang ; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institutegrid.454892.6, Chinese Academy of Agricultural Sciences, Lanzhou, China ; Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
Language :
English
Title :
Transmissible Gastroenteritis Virus Infection Promotes the Self-Renewal of Porcine Intestinal Stem Cells via Wnt/β-Catenin Pathway.
NSCF - National Natural Science Foundation of China
Funding text :
We thank Li Feng from Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences for providing a TGEV monoclonal antibody. This work was supported by the National Natural Science Foundation of China (31972689) and ULg-CAAS joint Ph.D. Program.
Zhao X, Bai X, Guan L, Li J, Song X, Ma X, Guo J, Zhang Z, Du Q, Huang Y, Tong D. 2018. microRNA-4331 promotes transmissible gastroenteritis virus (TGEV)-induced mitochondrial damage via targeting RB1, upregulating interleukin-1 receptor accessory protein (IL1RAP), and activating p38 MAPK pathway in vitro. Mol Cell Proteomics 17:190-204. https://doi.org/10.1074/ mcp.RA117.000432
Cui J, Li F, Shi ZL. 2019.Origin and evolution of pathogenic coronaviruses.Nat RevMicrobiol 17:181-192. https://doi.org/10.1038/s41579-018-0118-9.
Xia L, Yang Y, Wang J, Jing Y, Yang Q. 2018. Impact of TGEV infection on the pig small intestine. Virol J 15:102. https://doi.org/10.1186/s12985-018-1012-9.
Yang Z, Ran L, Yuan P, Yang Y, Wang K, Xie L, Huang S, Liu J, Song Z. 2018. EGFR as a negative regulatory protein adjusts the activity and mobility of NHE3 in the cell membrane of IPEC-J2 cells with TGEV infection. Front Microbiol 9:2734. https://doi.org/10.3389/fmicb.2018.02734.
Xia L, Dai L, Zhu L, Hu W, Yang Q. 2017. Proteomic analysis of IPEC-J2 cells in response to coinfection by porcine transmissible gastroenteritis virus and enterotoxigenic Escherichia coli K88. Proteomics Clin Appl 11. https://doi.org/10.1002/prca.201600137.
Timoney JF, Gillespie JH, Scott FW, Barlough JE. 1988. Hagan and Bruner's Microbiology and Infectious Diseases of Domestic Animals. Cornell University Press.
Wang Q, Vlasova AN, Kenney SP, Saif LJ. 2019. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 34:39-49. https://doi.org/10.1016/j .coviro.2018.12.001.
Zhao Q, Guan J, Wang X. 2020. Intestinal stem cells and intestinal organoids. J Genet Genomics 47:289-299. https://doi.org/10.1016/j.jgg.2020.06.005.
Barker N. 2014. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol 15:19-33. https://doi .org/10.1038/nrm3721.
Pitsouli C, Apidianakis Y, Perrimon N. 2009. Homeostasis in infected epithelia: stem cells take the lead. Cell Host Microbe 6:301-307. https://doi .org/10.1016/j.chom.2009.10.001.
Santos AJM, Lo YH, Mah AT, Kuo CJ. 2018. The intestinal stem cell niche: homeostasis and adaptations. Trends Cell Biol 28:1062-1078. https://doi .org/10.1016/j.tcb.2018.08.001.
Zeitz M, Ullrich R, Schneider T, Kewenig S, Hohloch K, Riecken EO. 1998. HIV/SIV enteropathy. Ann N Y Acad Sci 859:139-148. https://doi.org/10 .1111/j.1749-6632.1998.tb11118.x.
Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B. 2009. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200-211. https:// doi.org/10.1016/j.chom.2009.01.003.
Stewart AS, Schaaf CR, Luff JA, Freund JM, Becker TC, Tufts SR, Robertson JB, Gonzalez LM. 2021. HOPX(1) injury-resistant intestinal stem cells drive epithelial recovery after severe intestinal ischemia. Am J Physiol Gastrointest Liver Physiol 321:G588-G602. https://doi.org/10.1152/ajpgi.00165.2021.
Clevers H, Loh KM, Nusse R. 2014. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012. https://doi.org/10.1126/science.1248012.
Nusse R, Fuerer C, Ching W, Harnish K, Logan C, Zeng A, ten Berge D, Kalani Y. 2008. Wnt signaling and stem cell control. Cold Spring Harbor Symp Quant Biol 73:59-66. https://doi.org/10.1101/sqb.2008.73.035.
Guezguez A, Pare F, Benoit YD, Basora N, Beaulieu JF. 2014. Modulation of stemness in a human normal intestinal epithelial crypt cell line by activation of the WNT signaling pathway. Exp Cell Res 322:355-364. https://doi .org/10.1016/j.yexcr.2014.02.009.
Suh HN, Kim MJ, Jung YS, Lien EM, Jun S, Park JI. 2017. Quiescence exit of Tert(1) stemcells by Wnt/beta-catenin is indispensable for intestinal regeneration. Cell Rep 21:2571-2584. https://doi.org/10.1016/j.celrep.2017.10.118.
Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A. 1998. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395:604-608. https://doi.org/10.1038/26982.
Liu X, Lu R, Wu S, Sun J. 2010. Salmonella regulation of intestinal stem cells through the Wnt/beta-catenin pathway. FEBS Lett 584:911-916. https://doi.org/10.1016/j.febslet.2010.01.024.
Wang J, Gong L, Zhang W, Chen W, Pan H, Zeng Y, Liang X, Ma J, Zhang G, Wang H. 2020. Wnt/beta-catenin signaling pathway inhibits porcine reproductive and respiratory syndrome virus replication by enhancing the nuclear factor-kappaB-dependent innate immune response. Vet Microbiol 251:108904. https://doi.org/10.1016/j.vetmic.2020.108904.
Zhou JY, Lin HL, Wang Z, Zhang SW, Huang DG, Gao CQ, Yan HC, Wang XQ. 2020. Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/beta-catenin signaling pathway. Environ Pollut 262:114290. https://doi.org/10.1016/j.envpol.2020.114290.
Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, Liu G, Liu G. 2020. Nextgeneration porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J Virol 94:e01006-20. https://doi.org/10.1128/JVI.01006-20.
Crawford SE, Ramani S, Blutt SE, Estes MK. 2021. Organoids to dissect gastrointestinal virus-host interactions: what have we learned?. Viruses 13: 999. https://doi.org/10.3390/v13060999.
Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. 2011. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469: 415-418. https://doi.org/10.1038/nature09637.
Fevr T, Robine S, Louvard D, Huelsken J. 2007. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27:7551-7559. https://doi.org/10.1128/MCB.01034-07.
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262-265. https://doi.org/10.1038/nature07935.
Dutta D, Clevers H. 2017. Organoid culture systems to study host-pathogen interactions. Curr Opin Immunol 48:15-22. https://doi.org/10.1016/j .coi.2017.07.012.
Yin L, Liu X, Hu D, Luo Y, Zhang G, Liu P. 2021. Swine enteric coronaviruses (PEDV, TGEV, and PDCoV) induce divergent interferon-stimulated gene responses and antigen presentation in porcine intestinal enteroids. Front Immunol 12:826882. https://doi.org/10.3389/fimmu.2021.826882.
Pelaseyed T, Bergstrom JH, Gustafsson JK, Ermund A, Birchenough GM, Schutte A, van der Post S, Svensson F, Rodriguez-Pineiro AM, Nystrom EE, Wising C, Johansson ME, Hansson GC. 2014. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260:8-20. https://doi.org/10.1111/imr.12182.
van der Flier LG, Clevers H. 2009. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241-260. https:// doi.org/10.1146/annurev.physiol.010908.163145.
Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA. 2009. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343-1355. https://doi.org/10.1016/j.cell .2009.05.014.
Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM, Clevers H. 2016. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530: 340-343. https://doi.org/10.1038/nature16937.
Clevers H. 2013. The intestinal crypt, a prototype stem cell compartment. Cell 154:274-284. https://doi.org/10.1016/j.cell.2013.07.004.
Clevers H, Nusse R. 2012. Wnt/beta-catenin signaling and disease. Cell 149:1192-1205. https://doi.org/10.1016/j.cell.2012.05.012.
Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA, Jenq RR, Velardi E, Young LF, Smith OM, Lawrence G, Ivanov JA, Fu YY, Takashima S, Hua G, Martin ML, O'Rourke KP, Lo YH, Mokry M, Romera-Hernandez M, Cupedo T, Dow L, Nieuwenhuis EE, Shroyer NF, Liu C, Kolesnick R, van den Brink MRM, Hanash AM. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528: 560-564. https://doi.org/10.1038/nature16460.
Zhao X, Ma L, Dai L, Zuo D, Li X, Zhu H, Xu F. 2020. TNFa promotes the malignant transformation of intestinal stem cells through the NFkappaB and Wnt/betacatenin signaling pathways. Oncol Rep 44:577-588. https:// doi.org/10.3892/or.2020.7631.
Huang X, Chen J, Yao G, Guo Q, Wang J, Liu G. 2019. A TaqMan-probebased multiplex real-time RT-qPCR for simultaneous detection of porcine enteric coronaviruses. Appl Microbiol Biotechnol 103:4943-4952. https:// doi.org/10.1007/s00253-019-09835-7.