Integrated Study of New Faunal Assemblages Dominated by Gastropods at Three Vent Fields Along the Mid-Atlantic Ridge: Diversity, Structure, Composition and Trophic Interactions
diversity; environmental conditions; gastropod; habitat; hydrothermal vent; Mid-Atlantic Ridge; new assemblage; Oceanography; Global and Planetary Change; Aquatic Science; Water Science and Technology; Environmental Science (miscellaneous); Ocean Engineering
Abstract :
[en] To date, two main vent faunal assemblages have been described on active sulfide edifices along the northern Mid-Atlantic Ridge (nMAR): one dominated by bathymodiolin mussels in low temperature areas and the other dominated by alvinocaridid shrimp in warmer habitats. In this study, we describe the ecology of new types of assemblage, dominated by gastropods, that are recurrent in several nMAR vent fields, from ~830 m to 3500 m depth. We assessed and compared the composition, abundance, diversity and trophic niche of these assemblages from three vent fields (Menez Gwen, Lucky Strike and Snake Pit) and characterized their habitats in terms of key environmental conditions. These assemblages, first seen during the Momarsat cruise in 2012 at the Lucky Strike vent field, were investigated during several subsequent cruises. They appear to be widespread along the nMAR, forming two distinct assemblages, one dominated by Lepetodrilus atlanticusat the shallowest vent field Menez Gwen, and the other by Peltospira smaragdina at the other investigated fields. Our data seem to indicate that these gastropods dominate an intermediate habitat at MAR vents and may play an important ecological role in these communities.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Sarrazin, Jozée; Univ Brest, Ifremer, CNRS, Unité BEEP, Plouzané, France
Cathalot, Cécile; Univ Brest, Ifremer, CNRS, Unité GEOCEAN, Plouzané, France
Laes, Agathe; Ifremer, Unité RDT, Plouzané, France
Marticorena, Julien; Univ Brest, Ifremer, CNRS, Unité BEEP, Plouzané, France
Michel, Loïc ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Systématique et diversité animale ; Univ Brest, Ifremer, CNRS, Unité BEEP, Plouzané, France
Matabos, Marjolaine; Univ Brest, Ifremer, CNRS, Unité BEEP, Plouzané, France
Language :
English
Title :
Integrated Study of New Faunal Assemblages Dominated by Gastropods at Three Vent Fields Along the Mid-Atlantic Ridge: Diversity, Structure, Composition and Trophic Interactions
Publication date :
26 July 2022
Journal title :
Frontiers in Marine Science
eISSN :
2296-7745
Publisher :
Frontiers Media S.A.
Volume :
9
Pages :
925419
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ANR - Agence Nationale de la Recherche
Funding text :
This work was supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the “Investissements d’Avenir” program. The project is part of the EMSO-Azores regional node within EMSO-France ( http://www.emso-fr.org ) and EMSO ERIC Research Infrastructure ( http://emso.eu/ ). The research program was partly funded by an ANR research grant (ANR Lucky Scales ANR-14-CE02-0008-02).We would like to dedicate this paper to Benoît Pernet-Coudrier, our colleague who passed away in 2016. We thank the captain of the R/Vs Thalassa, L’Atalante and Pourquoi pas? and their crews for their steadfast collaboration in the success of the various cruises. We are particularly grateful to Pierre-Marie Sarradin, Mathilde Cannat, François Lallier and Marie-Anne Cambon, chief scientists of the cruises who greatly supported our sampling program. We are also grateful to the ROV Victor6000 pilots for their patience and constant support. We warmly thank the LEP technical team for its valuable help both at sea and in the lab. Two master students contributed to sorting the fauna: Roxane Augen-Langonne (M1, 2014) and Bruno Labelle (M2, 2015). PhD student L. Van Audenhaege helped with the video editing. The manuscript was professionally edited by Carolyn Engel-Gautier.
Bates A. E. (2007). Persistence, Morphology, and Nutritional State of a Gastropod Hosted Bacterial Symbiosis in Different Levels of Hydrothermal Vent Flux. Mar. Biol. 152, 557–568. doi: 10.1007/s00227-007-0709-x
Bates A. E. Tunnicliffe V. Lee R. W. (2005). Role of Thermal Conditions in Habitat Selection by Hydrothermal Vent Gastropods. Mar. Ecol. Prog. Ser. 305, 1–15. doi: 10.3354/meps305001
Bayer S. R. Mullineaux L. S. Waller R. G. Solow A. R. (2011). Reproductive Traits of Pioneer Gastropod Species Colonizing Deep-Sea Hydrothermal Vents After an Eruption. Mar. Biol. 158, 181–192. doi: 10.1007/s00227-010-1550-1
Beaulieu S. E. Szafranski K. M. (2020). InterRidge Global Database of Active Submarine Hydrothermal Vent Fields Version 3.4. doi: 10.1594/PANGAEA.917894
Beinart R. A. Sanders J. G. Faure B. Sylva S. P. Lee R. W. Becker E. L. et al. (2012). Evidence for the Role of Endosymbionts in Regional-Scale Habitat Partitioning by Hydrothermal Vent Symbioses. Proc. Natl. Acad. Sci. 109 (47), E3241–E3250 doi: 10.1073/pnas.1202690109
Cannat M. Sarradin P. Blandin J. Escartın J. Colaço A. (2011). MoMar-Demo at Lucky Strike. A Near-Real Time Multidisciplinary Observatory of Hydrothermal Processes and Ecosystems at the Mid-Atlantic Ridge (San Francisco: AGU Fall meeting). Abstract OS22A-05.
Charlou J. Donval J. Douville E. Jean-Baptiste P. Radford-Knoery J. Fouquet Y. et al. (2000). Geochemical Signatures and the Evolution of Menez Gwen (37 50′ N) and Lucky Strike (37 17 ′ N) Hydrothermal Fluids, South of the Azores Triple Junction on the Mid. Chem. geology 171, 49–75. doi: 10.1016/S0009-2541(00)00244-8
Collins P. C. Hunter W. R. Carlsson J. Carlsson J. (2020). Fortuitous Insights Into the Ecology of a Recently Charted Deep-Sea Hydrothermal Vent, Using Snails’ Feet. Deep-Sea Res. Part I: Oceanogr. Res. Papers 163, 103358. doi: 10.1016/j.dsr.2020.103358
Coplen T. B. (2011). Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results. Rapid Commun. Mass Spectrom. 25, 2538–2560. doi: 10.1002/rcm.5129
Copley J. T. P. Tyler P. A. Murton B. J. Van Dover C. L. (1997). Spatial and Inter-Annual Variation in the Faunal Distribution at Broken Spur Vent Field (29°N, Mid-Atlantic Ridge). Mar. Biol. 129, 723–733. doi: 10.1007/s002270050215
Cuvelier D. Legendre P. Laes A. Sarradin P. M. Sarrazin J. (2014). Rhythms and Community Dynamics of a Hydrothermal Tubeworm Assemblage at Main Endeavour Field - a Multidisciplinary Deep-Sea Observatory Approach. PLoS One 9 (5), e96924. doi: 10.1371/journal.pone.0096924
Cuvelier D. Sarradin P. Sarrazin J. Colaço A. Copley J. T. P. Desbruyères D. et al. (2011a). Hydrothermal Faunal Assemblages and Habitat Characterisation at the Eiffel Tower Edifice (Lucky Strike, Mid-Atlantic Ridge). Mar. Ecol. 32, 243–255. doi: 10.1111/j.1439-0485.2010.00431.x
Cuvelier D. Sarrazin J. Colaco A. Copley J. Desbruyeres D. Glover A. G., Tyler P. Santos R.S. (2009). Distribution and Spatial Variation of Hydrothermal Faunal Assemblages at Lucky Strike (Mid-Atlantic Ridge) Revealed by High-Resolution Video Image Analysis. Deep Sea Res. Part I: Oceanogr. Res. Papers 56 (11), 2026–2040 doi: 10.1016/j.dsr.2009.06.006
Cuvelier D. Sarrazin J. Colaço A. Copley J. T. Glover A. G. Tyler P. A. et al. (2011b). Community Dynamics Over 14 Years at the Eiffel Tower Hydrothermal Edifice on the Mid-Atlantic Ridge. Limnology Oceanogr. 56, 1624–1640. doi: 10.4319/lo.2011.56.5.16241624
De Busserolles F. Sarrazin J. Gauthier O. Gélinas Y. Fabri M. C. Sarradin P. M. et al. (2009). Are Spatial Variations in the Diets of Hydrothermal Fauna Linked to Local Environmental Conditions? Deep-Sea Res. Part II Topical Stud. Oceanogr. 56 (19–20), 1649–1664. doi: 10.1016/j.dsr2.2009.05.011
Desbruyères D. Almeida A. J. Biscoito M. Comtet T. Khripounoff A. le Bris N. et al. (2000). A Review of the Distribution of Hydrothermal Vent Communities Along the Northern Mid-Atlantic Ridge: Dispersal vs. Environmental Controls. Hydrobiologia 440, 201–216. doi: 10.1023/A:1004175211848
Desbruyères D. Biscoito M. Caprais J.-C. Colaço A. Comtet T. Crassous P. et al. (2001). Variations in Deep-Sea Hydrothermal Vent Communities on the Mid-Atlantic Ridge Near the Azores Plateau. Deep-Sea Res. Part I: Oceanogr. Res. Papers 48, 1325–1346. doi: 10.1016/S0967-0637%2800%2900083-2
Desbruyères D. Segonzac M. Bright M. (Eds) (2006) Handbook of Deep-Sea Hydrothermal Vent Fauna.Linz, Austria: Land Oberösterreich, Biologiezentrum der Oberösterreichische Landesmuseen.
Fouquet Y. Wafik A. Cambon P. Mevel C. Meyer G. Gente P. (1993). Tectonic Setting and Mineralogical and Geochemical Zonation in the Snake Pit Sulfide Deposit (Mid-Atlantic Ridge at 23°N). Economic geology 88, 2018–2036. doi: 10.2113/gsecongeo.88.8.2018
Gaudron S. M. Marqué L. Thiébaut E. Riera P. Duperron S. Zbinden M. (2015). How are Microbial and Detrital Sources Partitioned Among and Within Gastropods Species at East Pacific Rise Hydrothermal Vents? Mar. Ecol. 36, 18–34. doi: 10.1111/maec.12260
Gebruk A. V. Galkin S. Vereshchaka A. Moskalev L. Southward A. J. (1997). Ecology and Biogeography of the Hydrothermal Vent Fauna of the Mid-Atlantic Ridge. Adv. Mar. Biol. 32, 93–144. doi: 10.1016/S0065-2881(08)60016-4
Gollner S. Colaço A. Gebruk A. Halpin P. N. Higgs N. Menini E. et al. (2021). Application of Scientific Criteria for Identifying Hydrothermal Ecosystems in Need of Protection. Mar. Policy 132, 104641. doi: 10.1016/j.marpol.2021.104641
Gollner S. Riemer B. Martínez Arbizu P. Le Bris N. Bright M. (2010). Diversity of Meiofauna From the 9°50’n East Pacific Rise Across a Gradient of Hydrothermal Fluid Emissions. PLoS One 5, e12321. doi: 10.1371/journal.pone.0012321
Govenar B. (2012). Energy Transfer Through Food Webs at Hydrothermal Vents: Linking the Lithosphere to the Biosphere. Oceanography 25, 246–255. doi: 10.5670/oceanog.2012.23
Govenar B. Fisher C. R. (2007). Experimental Evidence of Habitat Provision by Aggregations of Riftia Pachyptila at Hydrothermal Vents on the East Pacific Rise. Mar. Ecol. 28, 3–14. doi: 10.1111/j.1439-0485.2007.00148.x
Govenar B. le Bris N. Gollner S. Glanville J. Aperghis A. Hourdez S. et al. (2005). Epifaunal Community Structure Associated With Riftia Pachyptila Aggregations in Chemically Different Hydrothermal Vent Habitats. Mar. Ecol. Prog. Ser. 305, 67–77. doi: 10.3354/meps305067
Hernández-Ávila I. Cambon-Bonavita M.-A. Sarrazin J. Pradillon F. (2022). Population Structure and Reproduction of the Alvinocaridid Shrimp Rimicaris Exoculata on the Mid-Atlantic Ridge: Variations between Habitats and Vent Fields. Deep-Sea Res. I: Oceanogr. Res. Pap. 186 (103827), 14. doi: 10.1016/j.dsr.2022.103827
Hügler M. Sievert S. M. (2011). Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean. Annu. Rev. Mar. Sci. 3, 261–289. doi: 10.1146/annurev-marine-120709-142712
Hurlbert S. H. (1971). The Nonconcept of Species Diversity: A Critique and Alternative Parameters. Ecology 52, 577–586. doi: 10.2307/1934145
Husson B. Sarradin P. Zeppilli D. Sarrazin J. (2017). Picturing Thermal Niches and Biomass of Hydrothermal Vent Species. Deep-Sea Res. Part II: Topical Stud. Oceanogr. 137, 6–25. doi: 10.1016/j.dsr2.2016.05.028
Jannasch H. W. (1985). The Chemosynthetic Support of Life and the Microbial Diversity at Deep-Sea Hydrothermal Vents. Proc. R. Soc. B: Biol. Sci. 225, 277–297. doi: 10.1098/rspb.1985.0062
Karl D. M. (1995). “Ecology of Free-Living, Hydrothermal Vent Microbial Communities,” in The Microbiology of Deep-Sea Hydrothermal Vents, vol. 1995). Ed. Karl D. M. (Boca Raton, FL: CRC Press Inc.), 35–124.
Karson J. A. Thompson G. Humphris S. E. Edmond J. M. Bryan W. B. Brown J. R. et al. (1987). Along-Axis Variations in Seafloor Spreading in the MARK Area. Nature 328, 681–685. doi: 10.1038/328681a0
Kelly N. E. Metaxas A. (2007). Influence of Habitat on the Reproductive Biology of the Deep-Sea Hydrothermal Vent Limpet Lepetodrilus Fucensis (Vetigastropoda: Mollusca) From the Northeast Pacific. Mar. Biol. 151, 649–662. doi: 10.1007/s00227-006-0505-z
Langmuir C. H. Humphris S. E. Fornari D. J. Van Dover C. L. Von Damm K. Tivey M. K. et al. (1997). Hydrothermal Vents Near a Mantle Hot Spot: The Lucky Strike Vent Field at 37°N on the Mid-Atlantic Ridge. Earth Planetary Sci. Lett. 148, 69–91. doi: 10.1016/S0012-821X(97)00027-7
Lau D. C. P. Leung K. M.Y. Dudgeon D. (2012). Preservation Effects on C/N Ratios and Stable Isotope Signatures of Freshwater Fishes and Benthic Macroinvertebrates. Limnology Oceanogr.: Methods 10, 75–89. doi: 10.4319/lom.2012.10.75
Le Bris N. Zbinden M. Gaill F. (2005). Processes Controlling the Physico-Chemical Micro-Environments Associated With Pompeii Worms. Deep-Sea Res. Part I: Oceanogr. Res. Papers 52, 1071–1083. doi: 10.1016/j.dsr.2005.01.003
Lee R. W. Robert K. Matabos M. Bates A. E. Juniper S. K. (2015). Temporal and Spatial Variation in Temperature Experienced by Macrofauna at Main Endeavour Hydrothermal Vent Field. Deep-Sea Res. Part I: Oceanogr. Res. Papers 106, 154–166. doi: 10.1016/j.dsr.2015.10.004
Legendre P. Gallagher E. (2001). Ecologically Meaningful Transformations for Ordination of Species Data. Oecologia 129, 271–280. doi: 10.1007/s004420100716
Lelievre Y. Legendre P. Matabos M. Mihaly S. Lee R. W. Sarradin P.-M. et al. (2017). Astronomical and Atmospheric Impacts on Deep-Sea Hydrothermal Vent Invertebrates. Proc. Of R. Soc. B-biological Sci. 284 (1852), 20162123. doi: 10.1098/rspb.2016.2123
Lelièvre Y. Sarrazin J. Marticorena J. Schaal G. Day T. Legendre P. Hourdez S. Matabos M., (2018). Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated With Tubeworm Assemblages on the Juan De Fuca Ridge. Biogeosciences 15. 2629–2647doi: 10.5194/bg-15-2629-2018
Levesque C. Juniper S. K. Marcus J. (2003). Food Resource Partitioning and Competition Among Alvinellid Polychaetes of Juan De Fuca Ridge Hydrothermal Vents. Mar. Ecol. Prog. Ser. 246, 173–182. doi: 10.3354/meps246173
Luther G. W. Gartman A. Yücel M. Madison A. Moore T. Nees H. et al. (2012). Chemistry, Temperature, and Faunal Distributions at Diffuse-Flow Hydrothermal Vents: Comparison of Two Geologically Distinct Ridge Systems. Oceanography 25, 234–245. doi: 10.5670/oceanog.2012.22
Luther G. W. Rozan T. F. Taillefert M. Nuzzio D. B. Di Meo C. Shank T. M. et al. (2001). Chemical Speciation Drives Hydrothermal Vent Ecology. Nature. 410, 813–816. doi: 10.1038/35071069
Maas P. A. Y. O’Mullan G. D. Lutz R. A. Vrijenhoek R. C. (1999). Genetic and Morphometric Characterization of Mussels (Bivalvia: Mytilidae) From Mid-Atlantic Hydrothermal Vents. Bioogical Bull. 196, 265–272. doi: 10.2307/1542951
McLean J.H. (1989). New Archaeogastropod Limpets from Hydrothermal Eents: New Family Peltospiridae, New Superfamily Peltospiracea. Zool. Scr. 18(1), 49–66.
Marcon Y. Sahling H. Borowski C. dos Santos Ferreira C. Thal J. Bohrmann G. (2013). Megafaunal Distribution and Assessment of Total Methane and Sulfide Consumption by Mussel Beds at Menez Gwen Hydrothermal Vent, Based on Geo-Referenced Photomosaics. Deep-Sea Res. Part I: Oceanogr. Res. Papers 75, 93–109. doi: 10.1016/j.dsr.2013.01.008
Marsh L. Copley J. T. Huvenne V. A. I. Linse K. Reid W. D. K. Rogers A. D. et al. (2012). Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean. PLoS One 7, e48348. doi: 10.1371/journal.pone.0048348
Marticorena J. Matabos M. Ramirez-Llodra E. Cathalot C. Laes-Huon A. Leroux R. et al. (2021). Recovery of Hydrothermal Vent Communities in Response to an Induced Disturbance at the Lucky Strike Vent Field (Mid-Atlantic Ridge). Mar. Environ. Res. 168 (105316), 14 doi: 10.1016/j.marenvres.2021.105316
Martins I. Cosson R. P. Riou V. Sarradin P. Sarrazin J. Santos R. S. et al. (2011). Relationship Between Metal Levels in the Vent Mussel Bathymodiolus Azoricus and Local Microhabitat Chemical Characteristics of Eiffel Tower (Lucky Strike). Deep-Sea Res. Part I: Oceanogr. Res. Papers 58, 306–315. doi: 10.1016/j.dsr.2011.01.002
Matabos M. Le Bris N. Pendlebury S. Thiébaut E. (2008). Role of Physico-Chemical Environment on Gastropod Assemblages at Hydrothermal Vents on the East Pacific Rise (13 N/EPR). J. Mar. Biol. Assoc. UK 88, 995–1008. doi: 10.1017/S002531540800163X
Matabos M. Plouviez S. Hourdez S. Desbruyères D. Legendre P. Warén A. et al. (2011). Faunal Changes and Geographic Crypticism Indicate the Occurrence of a Biogeographic Transition Zone Along the Southern East Pacific Rise. J. Biogeography 38, 575–594. doi: 10.1111/j.1365-2699.2010.02418.x
McClain R. Etter R. J. (2005). Mid-Domain Models as Predictors of Species Diversity Patterns: Bathymetric Diversity Gradients in the Deep Sea. Oikos 109 (3), 555–566. doi: 10.1111/j.0030-1299.2005.13529.x
Methou P. Hernández-Ávila I. Aube J. Cueff-Gauchard V. Gayet N. Amand L. et al. (2019). Is it First the Egg or the Shrimp? – Diversity and Variation in Microbial Communities Colonizing Broods of the Vent Shrimp Rimicaris Exoculata During Embryonic Development. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00808
Methou P. Michel L. N. Segonzac M. Cambon-Bonavita M.-A. Pradillon F. (2020). Integrative Taxonomy Revisits the Ontogeny and Trophic Niches of Rimicaris Vent Shrimps. R. Soc. Open Sci., 7(7), 200837 (13p.). doi: 10.1098/rsos.200837
Mills S. W. Mullineaux L. S. Tyler P. A. (2007). Habitat Associations in Gastropod Species at East Pacific Rise Hydrothermal Vents (9 Degrees 50’n). Biol. Bull. 212, 185–194. doi: 10.2307/25066601
Mullineaux L. S. Adams D. K. Mills S. W. Beaulieu S. E. (2010). Larvae From Afar Colonize Deep-Sea Hydrothermal Vents After a Catastrophic Eruption. Proc. Natl. Acad. Sci. 107, 7829–7834. doi: 10.1073/pnas.0913187107
Mullineaux L. S. Le Bris N. Mills S. W. Henri P. Bayer S. R. Secrist R. G. et al. (2012). Detecting the Influence of Initial Pioneers on Succession at Deep-Sea Vents. PLoS One 7, e50015. doi: 10.1371/journal.pone.0050015
Mullineaux L. S. Peterson C. H. Micheli F. Mills S. W. (2003). Successional Mechanisms Varies Along a Gradient in Hydrothermal Fluid Flux at Deep-Sea Vents. Ecol. Monogr. 73, 523–542. doi: 10.1890/02-0674
Nakamura M. Watanabe H. Sasaki T. Ishibashi J.-I. Fujikura K. Mitarai S. (2014). Life History Traits of Lepetodrilus Nux in the Okinawa Trough, Based Upon Gametogenesis, Shell Size, and Genetic Variability. Mar. Ecol. Prog. Ser. 505, 119–130. doi: 10.3354/meps10779
Nye V. Copley J. T. P. Tyler P. A. (2013). Spatial Variation in the Population Structure and Reproductive Biology of Rimicaris Hybisae (Caridea: Alvinocarididae) at Hydrothermal Vents on the Mid-Cayman Spreading Centre. PLoS One 8, e60319. doi: 10.1371/journal.pone.0060319
Oksanen J. Blanchet F.G. Kindt R. Legendre P. Minchin P. O’Hara R.B. et al.(2013). Vegan: Community Ecology Package. in R Package Version. 2.0-10. http://CRAN.R-project.org/package=vegan. CRAN.
Ondréas H. Cannat M. Fouquet Y. Normand A. Sarradin P.M. Sarrazin J. (2009). Recent Volcanic Events and the Distribution of Hydrothermal Venting at the Lucky Strike Hydrothermal Field, Mid-Atlantic Ridge. Geochemistry Geophysics Geosystems 10 (2),1–18. doi: 10.1029/2008GC002171
Podowski E. L. Moore T. S. Zelnio K. A. Luther G. W. Fisher C. R. (2009) Distribution of Diffuse Flow Megafauna in Two Sites on the Eastern Lau Spreading Center, Tonga. Deep-Sea Res. I, 56, 2041–2056. doi: 10.1016/j.dsr.2009.07.002
Podowski E. L. Ma S. Luther G. W. Wardrop D. Fisher C. R. (2010). Biotic and Abiotic Factors Affecting Distributions of Megafauna in Diffuse Flow on Andesite and Basalt Along the Eastern Lau Spreading Center, Tonga. Mar. Ecol. Prog. Ser. 418, 25–45. doi: 10.3354/meps08797
Portail M. Brandily C. Cathalot C. Colaço A. Gélinas Y. Husson B. et al. (2018). Food-Web Complexity Across Hydrothermal Vents on the Azores Triple Junction. Deep Sea Res. Part I: Oceanogr. Res. Papers 131, 101–120. doi: 10.1016/j.dsr.2017.11.010
R Core Team (2020). R: A Language and Environment for Statistical Computing (Vienna, Austria). Available at: http://www.R-project.org/.
Sancho G. Fisher C. R. Mills S. W. Micheli F. Johnson G. A. Lenihan H. S. et al. (2005). Selective Predation by the Zoarcid Fish Thermarces Cerberus at Hydrothermal Vents. Deep Sea Res. Part I: Oceanogr. Res. Papers 52, 837–844. doi: 10.1016/J.DSR.2004.12.002
Sarradin P. Caprais J.-C. Riso R. Kerouel R. Aminot A. (1999). Chemical Environment of the Hydrothermal Mussel Communities in the Lucky Strike and Menez Gwen Vent Fields, Mid Atlantic Ridge. Cahiers Biologie Mar. 40, 93–104.
Sarradin P. Waeles M. Bernagout S. Le Gall C. Sarrazin J. Riso R. (2009). Speciation of Dissolved Copper Within an Active Hydrothermal Edifice on the Lucky Strike Vent Field (MAR, 37°N). Sci. Total Environ. 407, 869–878. doi: 10.1016/j.scitotenv.2008.09.056
Sarrazin J. Juniper S. K. (1999). Biological Characteristics of a Hydrothermal Edifice Mosaic Community. Mar. Ecol. Prog. Ser. 185 (1999), 1–19. doi: 10.3354/meps185001
Sarrazin J. Juniper S. K. Massoth G. Legendre P. (1999). Physical and Chemical Factors Influencing Species Distributions on Hydrothermal Sulfide Edifices of the Juan De Fuca Ridge, Northeast Pacific. Mar. Ecol. Prog. Ser. 190, 89–112. doi: 10.3354/meps185001
Sarrazin J. Legendre P. de Busserolles F. Fabri M.-C. Guilini K. Ivanenko V. N. et al. (2015). Biodiversity Patterns, Environmental Drivers and Indicator Species on a High-Temperature Hydrothermal Edifice, Mid-Atlantic Ridge. Deep Sea Res. Part II: Topical Stud. Oceanogr. 121, 177–192. doi: 10.1016/j.dsr2.2015.04.013
Sarrazin J. Levesque C. Juniper S. Tivey M. (2002). Mosaic Community Dynamics on Juan De Fuca Ridge Sulphide Edifices: Substratum, Temperature and Implications for Trophic Structure. Cahiers Biologie Mar. 43 (3-4), 275–279. https://archimer.ifremer.fr/doc/00000/893/
Sarrazin J. Portail M. Legrand E. Cathalot C. Laes A. Lahaye N. et al. (2020). Endogenous Versus Exogenous Factors: What Matters for Vent Mussel Communities? Deep-Sea Res. Part I: Oceanogr. Res. Papers 160, 103260. doi: 10.1016/j.dsr.2020.103260
Sarrazin J. Robigou V. Juniper S. K. Delaney J. R. (1997). Biological and Geological Dynamics Over Four Years on a High-Temperature Sulfide Structure at the Juan De Fuca Ridge Hydrothermal Observatory. Mar. Ecol. Prog. Ser. 153, 5–24. doi: 10.3354/meps153005
Schmidt C. le Bris N. Gaill F. (2008). Interactions of Deep-Sea Vent Invertebrates With Their Environment: The Case of Rimicaris Exoculata. J. Shellfish Res. 27, 79–90. doi: 10.2983/0730-8000(2008)27[79:IODVIW]2.0.CO;2
Schneider C. A. Rasband W. S. Eliceiri K. W. (2012). NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods. 9, 671–675. doi: 10.1038/nmeth.2089
Segonzac M. De Saint-Laurent M. Casanova B. 1993Enigma of the Trophic Adaptation of the Shrimp Alvinocarididae in Hydrothermal Areas Along the Mid-Atlantic Ridge. Cah. Biol. Mar.344535–571
Sen A. Becker E. L. Podowski E. L. Wickes L. N. Ma S. Mullaugh K. M. et al. (2013). Distribution of Mega Fauna on Sulfide Edifices on the Eastern Lau Spreading Center and Valu Fa Ridge. Deep Sea Res. Part I: Oceanogr. Res. Papers 72, 48–60. doi: 10.1016/j.dsr.2012.11.003
Shank T. M. Fornari D. J. Von Damm K. L. Lilley M. D. Haymon R. M. Lutz R. A. (1998). Temporal and Spatial Patterns of Biological Community Development at Nascent Deep-Sea Hydrothermal Vents (9°50’n, East Pacific Rise). Deep-Sea Res. Part II: Topical Stud. Oceanogr. 45, 465–515. doi: 10.1016/S0967-0645(97)00089-1
Singh S. C. Crawford W. C. Carton H. Seher T. Combier V. Cannat M. et al. (2006). Discovery of a Magma Chamber and Faults Beneath a Mid-Atlantic Ridge Hydrothermal Field. Nature 442, 1029–1032. doi: 10.1038/nature05105
Tsurumi M. Tunnicliffe V. (2003). Tubeworm-Associated Communities at Hydrothermal Vents on the Juan De Fuca Ridge, Northeast Pacific. Deep Sea Res. I 50 (2003), 611–629. doi: 10.1016/S0967-0637(03)00039-6
Tunnicliffe V. (1991). The Biology of Hydrothermal Vents - Ecology and Evolution. Oceanogr. Mar. Biol. 29, 319–407.
Tyler P. A. Pendlebury S. Mills S. W. Mullineaux L. S. Eckelbarger K. J. Baker M. C. et al. (2008). Reproduction of Gastropods From Vents on the East Pacific Rise and the Mid- Atlantic Ridge. J. Shellfish Res. 27, 107–118. doi: 10.2983/0730-8000(2008)27[107:ROGFVO]2.0.CO;2
Van Dover C. L. (2002). Community Structure of Mussel Beds at Deep-Sea Hydrothermal Vents. Mar. Ecol. Prog. Ser. 230, 137–158. doi: 10.3354/meps230137
Van Dover C. L. (2003). Variation in Community Structure Within Hydrothermal Vent Mussel Beds of the East Pacific Rise. Mar. Ecol. Prog. Ser. 253, 55–66. doi: 10.3354/meps253055
Van Dover C. L. Doerries M. B. (2005). Community Structure in Mussel Beds at Logatchev Hydrothermal Vents and a Comparison of Macrofaunal Species Richness on Slow- and Fast-Spreading Mid-Ocean Ridges. Mar. Ecol. 26 (2), 110–120. doi: 10.1111/j.1439-0485.2005.00047.x
Van Dover C. L. German C. R. Speer K. G. Parson L. M. Vrijenhoek R. C. (2002). Evolution and Biogeography of Deep-Sea Vent and Seep Invertebrates. Science (New York N.Y.) 295, 1253–1257. doi: 10.1126/science.1067361
Vuillemin R. Le Roux D. Dorval P. Bucas K. Laes-Huon A. Hamon M. et al. (2009). CHEMINI: A New in Situ CHEmical MINIaturized Analyzer. Deep Sea Res. Part I: Oceanogr. Res. Paper 56 (8), 1391–1399. doi: 10.1016/j.dsr.2009.02.002
Warén A. Bouchet P. (2001). Gastropoda and Monoplacophora From Hydrothermal Vents and Seeps: New Taxa and Records. Veliger 44, 116–231.
Warén A. Bouchet P. von Cosel R. (2006). “Lepetodrilus McLean 1988, “Dimorphic Limpets,” in Handbook of Deep-Sea Hydrothermal Vent Fauna. Eds. Desbruyères D. Segonzac M. Bright M. (Linz: Biologiezentrum der Oberösterreichischen Landesmuseen).
Wheeler A. J. Murton B. Copley J. Lim A. Carlsson J. Collins P. C. et al. (2013). Moytirra: Discovery of the First Known Deep-Sea Hydrothermal Vent Field on the Slow-Spreading Mid-Atlantic Ridge North of the Azores. Geochemistry Geophysics Geosystems 14, 4170–4184. doi: 10.1002/ggge.20243
WoRMS Editorial Board (2022). World Register of Marine Species. Available at: https://www.marinespecies.org at: (Accessed July 04, 2022).
Zekely J. Van Dover C. L. Nemeschkal H. L. Bright M. (2006). Hydrothermal Vent Meiobenthos Associated With Mytilid Mussel Aggregations From the Mid-Atlantic Ridge and the East Pacific Rise. Deep-Sea Res. Part I: Oceanogr. Res. Papers 53, 1363–1378. doi: 10.1016/j.dsr.2006.05.01