Physics - Mesoscopic Systems and Quantum Hall Effect
Abstract :
[en] Spin-electronic devices are poised to become part of mainstream
microelectronic technology .Downsizing them, however, faces the intrinsic
difficulty that as ferromagnets become smaller, it becomes more difficult to
stabilize their magnetic moment. Antiferromagnets are much more stable, and
thus research on antiferromagnetic spintronics has developed into a
fast-growing field. Here, we provide proof of concept data that allows us to
expand the area of antiferromagnetic spintronics to the hitherto elusive level
of individual molecules. In contrast to all previous work on molecular
spintronics, our detection scheme of the molecule's spin state does not rely on
a magnetic moment. Instead, we use field-effect transistor devices constituting
of an isolated, contacted single-wall carbon nanotube covalently bound to a
limited number of molecular antiferromagnets incorporating four Mn(II) or
Co(II) ions. Time-dependent quantum transport measurement along the
functionalized nanotube show step-like transitions between several distinct
current levels, which we attribute to transitions between different
antiferromagnetic states of individual molecular complexes grafted on the
nanotube. A statistical analysis of the switching events using factorial
cumulants indicates that the cobalt complexes switch independently from each
other, while a coherent superposition of the antiferromagnetic spin states of
the molecules along the nanotube is observed for the manganese complexes. The
long coherence time (several seconds at 100 mK) is made possible by the absence
of spin and orbital momentum in the relevant states of the manganese complex,
while the cobalt complex includes a significant orbital momentum contribution
due to the pseudo-octahedral d$^7$ metal centers.
Disciplines :
Physics Chemistry
Author, co-author :
Besson, Claire ; Department of Chemistry, The George Washington University, Washington DC, USA
Stegmann, Philipp ; Theoretische Physik, Universität Duisburg-Essen and CENIDE, Duisburg, Germany
Schnee, Michael; Peter Grünberg Institut
Zanolli, Zeila ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures ; Chemistry Department and ETSF, Debye Institute for Nanomaterials Science, Condensed Matter and Interfaces, Utrecht University, Utrecht, The Netherlands
Achilli, Simona; Catalan Institute of Nanoscience and Nanotechnology
Wittemeier, Nils ; Catalan Institute of Nanoscience and Nanotechnology
Vierck, Asmus; Institut für Festkörperphysik, Technische Universität Berlin, Berlin, Germany
Frielinghaus, Robert; Peter Grünberg Institut
Kögerler, Paul ; Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, Germany
Maultzsch, Janina ; Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Ordejón, Pablo; Catalan Institute of Nanoscience and Nanotechnology
Schneider, Claus M.; Peter Grünberg Institut
Hucht, Alfred ; Theoretische Physik, Universität Duisburg-Essen and CENIDE, Duisburg, Germany
König, Jürgen ; Theoretische Physik, Universität Duisburg-Essen and CENIDE, Duisburg, Germany
Meyer, Carola ; Fachbereich Physik, Universität Osnabrück, Osnabrück, Germany
DFG - Deutsche Forschungsgemeinschaft Leopoldina - Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften OCW - Ministerie van Onderwijs, Cultuur en Wetenschap Generalitat de Catalunya ERC - European Research Council
Upping the anti, Nat. Phys. 14, 199 (2018) 10.1038/s41567-018-0091-2.
V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Antiferromagnetic spintronics, Rev. Mod. Phys. 90, 015005 (2018) 10.1103/RevModPhys.90.015005.
T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic spintronics, Nat. Nanotechnol. 11, 231 (2016) 10.1038/nnano.2016.18.
C. Marrows, Addressing an antiferromagnetic memory, Science 351, 558 (2016) 10.1126/science.aad8211.
M. Atzori and R. Sessoli, The second quantum revolution: Role and challenges of molecular chemistry, J. Am. Chem. Soc. 141, 11339 (2019) 10.1021/jacs.9b00984.
M. Gobbi, M. A. Novak, and E. del Barco, Molecular spintronics, J. Appl. Phys. 125, 240401 (2019) 10.1063/1.5113900.
Z. Zanolli and J. C. Charlier, Defective carbon nanotubes for single-molecule sensing, Phys. Rev. B 80, 155447 (2009) 10.1103/PhysRevB.80.155447.
Z. Zanolli and J. C. Charlier, Single-molecule sensing using carbon nanotubes decorated with magnetic clusters, ACS Nano 6, 10786 (2012) 10.1021/nn304111a.
Z. Zanolli and J. C. Charlier, Spin transport in carbon nanotubes with magnetic vacancy-defects, Phys. Rev. B 81, 165406 (2010) 10.1103/PhysRevB.81.165406.
S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Giant Magnetoresistance through a single molecule, Nat. Nanotechnol. 6, 185 (2011) 10.1038/nnano.2011.11.
M. Bazarnik, B. Bugenhagen, M. Elsebach, E. Sierda, A. Frank, M. H. Prosenc, and R. Wiesendanger, Toward tailored all-spin molecular devices, Nano Lett. 16, 577 (2016) 10.1021/acs.nanolett.5b04266.
S. Karan, C. García, M. Karolak, D. Jacob, N. Lorente, and R. Berndt, Spin control induced by molecular charging in a transport junction, Nano Lett. 18, 88 (2018) 10.1021/acs.nanolett.7b03411.
A. Bellec, J. Lagoute, and V. Repain, Molecular electronics: Scanning tunneling microscopy and single-molecule devices, C. R. Chim. 21, 1287 (2018) 10.1016/j.crci.2018.06.001.
F. Paschke, P. Erler, V. Enenkel, L. Gragnaniello, and M. Fonin, Bulk-like magnetic signature of individual (Equation presented) molecular magnets on graphene, ACS Nano 13, 780 (2019) 10.1021/acsnano.8b08184.
J. Li, N. Friedrich, N. Merino, D. G. de Oteyza, D. Peña, D. Jacob, and J. I. Pascual, Electrically addressing the spin of a magnetic porphyrin through covalently connected graphene electrodes, Nano Lett. 19, 3288 (2019) 10.1021/acs.nanolett.9b00883.
G. Czap, P. J. Wagner, F. Xue, L. Gu, J. Li, J. Yao, R. Wu, and W. Ho, Probing and imaging spin interactions with a magnetic single-molecule sensor, Science 364, 670 (2019) 10.1126/science.aaw7505.
G. Czap, P. J. Wagner, J. Li, F. Xue, J. Yao, R. Wu, and W. Ho, Detection of Spin-Vibration States in Single Magnetic Molecules, Phys. Rev. Lett. 123, 106803 (2019) 10.1103/PhysRevLett.123.106803.
E. Sierda, M. Elsebach, R. Wiesendanger, and M. Bazarnik, Probing weakly hybridized magnetic molecules by single-atom magnetometry, Nano Lett. 19, 9013 (2019) 10.1021/acs.nanolett.9b04025.
K. Yang, H. Chen, T. Pope, Y. Hu, L. Liu, D. Wang, L. Tao, W. Xiao, X. Fei, Y.-Y. Zhang, Tunable giant magnetoresistance in a single-molecule junction, Nat. Commun. 10, 3599 (2019) 10.1038/s41467-019-11587-x.
Z. Xu, J. Liu, S. Hou, and Y. Wang, Manipulation of molecular spin state on surfaces studied by scanning tunneling microscopy, Nanomat. 10, 2393 (2020) 10.3390/nano10122393.
J. E. Grose, E. S. Tam, C. Timm, M. Scheloske, B. Ulgut, J. J. Parks, H. D. Abruña, W. Harneit, and D. C. Ralph, Tunnelling spectra of individual magnetic endofullerene molecules, Nat. Mater. 7, 884 (2008) 10.1038/nmat2300.
R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, Electronic read-out of a single nuclear spin using a molecular spin transistor, Nature 488, 357 (2012) 10.1038/nature11341.
S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Electrically driven nuclear spin resonance in single-molecule magnets, Science 344, 1135 (2014) 10.1126/science.1249802.
E. Burzurí, A. García-Fuente, V. García-Suárez, K. Senthil Kumar, M. Ruben, J. Ferrer, and H. S. J. van der Zant, Spin-state dependent conductance switching in single molecule-graphene junctions, Nanoscale 10, 7905 (2018) 10.1039/C8NR00261D.
L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nat. Mater. 7, 179 (2008) 10.1038/nmat2133.
M. Urdampilleta, S. Klyatskaya, J. P. Cleuziou, M. Ruben, and W. Wernsdorfer, Supramolecular spin valves, Nat. Mater. 10, 502 (2011) 10.1038/nmat3050.
M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system, Nat. Nanotechnol. 8, 165 (2013) 10.1038/nnano.2012.258.
M. Urdampilleta, S. Klayatskaya, M. Ruben, and W. Wernsdorfer, Magnetic interaction between a radical spin and a single-molecule magnet in a molecular spin-valve, ACS Nano 9, 4458 (2015) 10.1021/acsnano.5b01056.
E. Kampert, F. F. B. J. Janssen, D. W. Boukhvalov, J. C. Russcher, J. M. M. Smits, R. de Gelder, B. de Bruin, P. C. M. Christianen, U. Zeitler, M. I. Katsnelson, Ligand-controlled magnetic interactions in (Equation presented) clusters, lnorg. Chem. 48, 11903 (2009) 10.1021/ic901930w.
S. Achilli, C. Besson, X. He, P. Ordejón, C. Meyer, and Z. Zanolli, Magnetic properties of coordination clusters with (Equation presented) and (Equation presented) antiferromagnetic cores, Phys. Chem. Chem. Phys. 24, 3780 (2022) 10.1039/D1CP03904K.
R. Frielinghaus, C. Besson, L. Houben, A.-K. Saelhoff, C. M. Schneider, and C. Meyer, Controlled covalent binding of antiferromagnetic tetramanganese complexes to carbon nanotubes, RSC Adv. 5, 84119 (2015) 10.1039/C5RA14983E.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.107.245414 for a discussion of spin states in the (Equation presented) complex, DFT calculations of (Equation presented) or (Equation presented) complex grafted to the CNT, a Raman spectrum of the (Equation presented) functionalized CNT device, the histogram of the derivative of the original direct current data, the theoretical models and results (PDF file) as well as the coordinates of CNT-(Equation presented) systems used for DFT calculations (ZIP archive containing separate XYZ files). The Supplemental Material also contains additional Refs. [33-38].
N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate Discrete Distributions (John Wiley & Sons, Inc., Hoboken, 2005).
S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165401 (2002) 10.1103/PhysRevB.65.165401.
R. Cuadrado and J. I. Cerdá, Fully relativistic pseudopotential formalism under an atomic orbital basis: Spin-orbit splittings and magnetic anisotropies, J. Phys.: Condens. Matter 24, 086005 (2012) 10.1088/0953-8984/24/8/086005.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57, 1505 (1998) 10.1103/PhysRevB.57.1505.
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sanchez-Portal, The siesta method for ab initio order-N materials simulation, J. Phys.: Condens. Matter 14, 2745 (2002) 10.1088/0953-8984/14/11/302.
M. Schnee, C. Besson, R. Frielinghaus, C. Lurz, P. Kögerler, C. M. Schneider, and C. Meyer, Quantum transport in carbon nanotubes covalently functionalized with magnetic molecules, Phys. Status Solidi B 253, 2424 (2016) 10.1002/pssb.201600292.
S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects, Phys. Rev. B 75, 035427 (2007) 10.1103/PhysRevB.75.035427.
A. Vierck, F. Gannott, M. Schweiger, J. Zaumseil, and J. Maultzsch, ZA-derived phonons in the Raman spectra of single-walled carbon nanotubes, Carbon 117, 360 (2017) 10.1016/j.carbon.2017.02.101.
M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, Single-electron transport in ropes of carbon nanotubes, Science 275, 1922 (1997) 10.1126/science.275.5308.1922.
V. A. Sydoruk, K. Goß, C. Meyer, M. V. Petrychuk, B. A. Danilchenko, P. Weber, C. Stampfer, J. Li, and S. A. Vitusevich, Low-frequency noise in individual carbon nanotube field-effect transistors with top, side and back gate configurations: Effect of gamma irradiation, Nanotechnology 25, 035703 (2013) 10.1088/0957-4484/25/3/035703.
S. Ponzoni, S. Achilli, C. Pintossi, G. Drera, L. Sangaletti, P. Castrucci, M. De Crescenzi, and S. Pagliara, Hybridized C-O-Si interface states at the origin of efficiency improvement in CNT/Si solar cells, ACS Appl. Mater. Interfaces 9, 16627 (2017) 10.1021/acsami.7b01766.
A. Gruneis, M. J. Esplandiu, D. Garcia-Sanchez, and A. Bachtold, Detecting individual electrons using a carbon nanotube field-effect transistor, Nano Lett. 7, 3766 (2007) 10.1021/nl072243w.
D. Kambly, C. Flindt, and M. Büttiker, Factorial cumulants reveal interactions in counting statistics, Phys. Rev. B 83, 075432 (2011) 10.1103/PhysRevB.83.075432.
P. Stegmann, B. Sothmann, A. Hucht, and J. König, Detection of interactions via generalized factorial cumulants in systems in and out of equilibrium, Phys. Rev. B 92, 155413 (2015) 10.1103/PhysRevB.92.155413.
A. Kurzmann, P. Stegmann, J. Kerski, R. Schott, A. Ludwig, A. D. Wieck, J. König, A. Lorke, and M. Geller, Optical Detection of Single-Electron Tunneling into a Semiconductor Quantum Dot, Phys. Rev. Lett. 122, 247403 (2019) 10.1103/PhysRevLett.122.247403.
P. Stegmann and J. König, Short-time counting statistics of charge transfer in Coulomb-blockade systems, Phys. Rev. B 94, 125433 (2016) 10.1103/PhysRevB.94.125433.
E. Kleinherbers, P. Stegmann, A. Kurzmann, M. Geller, A. Lorke, and J. König, Pushing the Limits in Real-Time Measurements of Quantum Dynamics, Phys. Rev. Lett. 128, 087701 (2022) 10.1103/PhysRevLett.128.087701.
A. V. Khaetskii and Y. V. Nazarov, Spin relaxation in semiconductor quantum dots, Phys. Rev. B 61, 12639 (2000) 10.1103/PhysRevB.61.12639.
M. Martens, G. Franco, N. S. Dalal, S. Bertaina, and I. Chiorescu, Spin-orbit coupling fluctuations as a mechanism of spin decoherence, Phys. Rev. B 96, 180408 (R) (2017) 10.1103/PhysRevB.96.180408.
M. Serri, W. Wu, L. R. Fleet, N. M. Harrison, C. F. Hirjibehedin, C. W. M. Kay, A. J. Fisher, G. Aeppli, and S. Heutz, High-temperature antiferromagnetism in molecular semiconductor thin films and nanostructures, Nat. Commun. 5, 3079 (2014) 10.1038/ncomms4079.
C. Morgan, M. Misiorny, D. Metten, S. Heedt, T. Schäpers, C. M. Schneider, and C. Meyer, Impact of Tunnel-Barrier Strength on Magnetoresistance in Carbon Nanotubes, Phys. Rev. Appl. 5, 054010 (2016) 10.1103/PhysRevApplied.5.054010.
M. Misiorny and C. Meyer, Gate-Voltage Response of a One-Dimensional Ballistic Spin Valve without Spin-Orbit Interaction, Phys. Rev. Appl. 7, 024011 (2017) 10.1103/PhysRevApplied.7.024011.
A. García, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerdá, F. Corsetti, siesta: Recent developments and applications, J. Chem. Phys. 152, 204108 (2020) 10.1063/5.0005077.
N. Papior, N. Lorente, T. Frederiksen, A. García, and M. Brandbyge, Improvements on non-equilibrium and transport Green function techniques: The next-generation transiesta, Comput. Phys. Commun. 212, 8 (2017) 10.1016/j.cpc.2016.09.022.
A. T. Costa, D. F. Kirwan, and M. S. Ferreira, Indirect exchange coupling between magnetic adatoms in carbon nanotubes, Phys. Rev. B 72, 085402 (2005) 10.1103/PhysRevB.72.085402.
R. Cuadrado, R. Robles, A. García, M. Pruneda, P. Ordejón, J. Ferrer, and J. I. Cerdá, Validity of the on-site spin-orbit coupling approximation, Phys. Rev. B 104, 195104 (2021) 10.1103/PhysRevB.104.195104.