Balhara, A. K., Gupta, M., Singh, S., Mohanty, A. K., & Singh, I. (2013). Early pregnancy diagnosis in bovines: Current status and future directions. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/958540
Bekele, N., Addis, M., Abdela, N., & Ahmed, W. M. (2016). Pregnancy Diagnosis in Cattle for Fertility Management: A Review. Global Veterinaria, 16(4), 355–364. https://doi.org/10.5829/idosi.gv.2016.16.04.103136
Benedet, A., Franzoi, M., Penasa, M., Pellattiero, E., & De Marchi, M. (2019). Prediction of blood metabolites from milk mid-infrared spectra in early-lactation cows. Journal of Dairy Science, 102(12), 11298–11307. https://doi.org/10.3168/jds.2019-16937
Delhez, P., Ho, P. N., Gengler, N., Soyeurt, H., & Pryce, J. E. (2020). Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy? Journal of Dairy Science, 103(4), 3264–3274. https://doi.org/10.3168/jds.2019-17473
Egger-Danner, C., Fürst, C., Mayerhofer, M., Rain, C., & Rehling, C. (2018). ZuchtData Jahresbericht 2018. Vienna. [Online]. Available at: https://zar.at/Downloads/Jahresberichte/ZuchtData-Jahresberichte.html. [Accessed: 2020, May 15].
Gengler, N., Tijani, A., Wiggans, G. R., & Misztal, I. (1999). Estimation of (Co)variance function coefficients for test day yield with a expectation-maximization restricted maximum likelihood algorithm. Journal of Dairy Science, 82(8), 1849.e1-1849.e23. https://doi.org/10.3168/jds.S0022-0302(99)75417-2
Grelet, C., Fernández Pierna, J. A., Dardenne, P., Baeten, V., & Dehareng, F. (2015). Standardization of milk mid-infrared spectra from a European dairy network. Journal of Dairy Science, 98(4), 2150–2160. https://doi.org/10.3168/jds.2014-8764
Grelet, C., Bastin, C., Gelé, M., Davière, J. B., Johan, M., Werner, A., Reding, R., Fernandes Pierna, J. A., Colinet, F. G., Dardenne, P., Gendler, N., Soyeurt, H. & Dehareng, F. (2016). Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. Journal of Dairy Science, 99(6), 4816–4825. https://doi.org/10.3168/jds.2015-10477
Hirpa, A., Yehualaw, B., Wube, A., Asnake, A., Jemberu, A., Medicine, V., & Box, P. O. (2018). Review on Pregnancy Diagnosis in Dairy Cows, 9(2), 45–55. https://doi.org/10.5829/idosi.jri.2018.45.55
Ho, P. N., Bonfatti, V., Luke, T. D. W., & Pryce, J. E. (2019). Classifying the fertility of dairy cows using milk mid-infrared spectroscopy. Journal of Dairy Science. https://doi.org/10.3168/jds.2019-16412
Humblot, P. (2001). Monitor Pregnancy and Determine the Timing, Frequencies and Sources of Embryonic Mortality in Ruminants. Theriogenology, 56(01), 1417–1433.
Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5), 1–26.
Lainé, A., Bel Mabrouk, H., Dale, L. M., Bastin, C., & Gengler, N. (2014). How to use mid-infrared spectral information from milk recording system to detect the pregnancy status of dairy cows. Communications in Agricultural and Applied Biological Sciences, 79(1), 33–38.
Lainé, A., Bastin, C., Grelet, C., Hammami, H., Colinet, F. G., Dale, L. M., Gillon, A., Vandenplas, J., Deharend, F. & Gengler, N. (2017). Assessing the effect of pregnancy stage on milk composition of dairy cows using mid-infrared spectra. Journal of Dairy Science, 100(4), 2863–2876. https://doi.org/10.3168/jds.2016-11736
Lantz, B. (2015). Machine Learning with R. Machine Learning (Second Edi). Packt Publishing Ltd. https://doi.org/10.1002/9781119642183.ch14
Mineur, A., Köck, A., Grelet, C., Gengler, N., Egger-Danner, C., & Sölkner, J. (2017). First Results in the Use of Milk Mid-infrared Spectra in the Detection of Lameness in Austrian Dairy Cows Genomic evaluation View project MACSUR View project. Agriculturae Conspectus Scientifi Cus, Vol. 82(No. 2 (163-166)), (163-166). Retrieved from https://www.researchgate.net/publication/325450513
Olori, V. E., Brotherstone, S., Hill, W. G., & McGuirk, B. J. (1997). Effect of gestation stage on milk yield and composition in Holstein Friesian dairy cattle. Livestock Production Science, 52(2), 167–176. https://doi.org/10.1016/S0301-6226(97)00126-7
Pohler, K. G., Franco, G. A., Reese, S. T., Dantas, F. G., Ellis, M. D., & Payton, R. R. (2016). Past, present and future of pregnancy detection methods. Applied Reproductive Strategies in Beef Cattle 7-8 September 2016, 251–259.
Rienesl, L., Khayatzadeh, N., Köck, A., Dale, L., Werner, A., Grelet, C., Gengler, N., Auer, F-J., Egger-Danner, C., Massart, X. & Sölkner, J. (2019). Mastitis detection from milk mid-infrared (MIR) spectroscopy in dairy cows. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(5), 1221–1226. https://doi.org/10.11118/actaun201967051221
Santos, J. E. P., Thatcher, W. W., Chebel, R. C., Cerri, R. L. A., & Galvão, K. N. (2004). The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Animal Reproduction Science, 82–83, 513–535. https://doi.org/10.1016/j.anireprosci.2004.04.015 SAS Institute Inc. (2017). SAS software 9.4. SAS Institute Inc., Cary, NC, USA.
Soyeurt, H., Dehareng, F., Gengler, N., McParland, S., Wall, E., Berry, D. P., Coffey, P. & Dardenne, P. (2011). Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. Journal of Dairy Science, 94(4), 1657–1667. https://doi.org/10.3168/jds.2010-3408
Soyeurt, H., Bastin, C., Colinet, F. G., Arnould, V. M.-R., Berry, D. P., Wall, E., Dehareng, F., Nguyen, H. N., Pardenne, P., Schefers, J., Vandenplas, J., Weigel, K., Coffey, M., Théron, L., Detilleux, J., Reding, E., Gengler, N. & McParland, S. (2012). Mid-infrared prediction of lactoferrin content in bovine milk: potential indicator of mastitis. Animal, 6(11), 1830–1838. https://doi.org/10.1017/s1751731112000791
Toffanin, V., De Marchi, M., Lopez-Villalobos, N., & Cassandro, M. (2015). Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties. International Dairy Journal, 41, 68–73. https://doi.org/10.1016/j.idairyj.2014.10.002
Vanlierde, A., Vanrobays, M.-L., Dehareng, F., Froidmont, E., Soyeurt, H., McParland, S., S., Lewis, E., Deighton, M. H., Grandl, F., Kreuzer, M., Gredler, B., Dardenne, P. & Gengler, N. (2015). Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. Journal of Dairy Science, 98(8), 5740–5747. https://doi.org/10.3168/jds.2014-8436
Vanlierde, A., Soyeurt, H., Gengler, N., Colinet, F. G., Froidmont, E., Kreuzer, M., Grandl, F., Bell, M., Lund, P., Olijhoek, D. W., Eugéne M., Martin, C., Kuhla, B. & Dehareng, F. (2018). Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers. Journal of Dairy Science, 101(8). https://doi.org/10.3168/jds.2018-14472