plant dynamic; ruderal; spontaneous species; green infrastructure; seed persistence; urban ecology; substrate depth; sun exposure
Abstract :
[en] Extensive green roofs have been shown to support native biodiversity and plant
communities that are analogous to natural or semi-natural habitats such as
grasslands. However, little is known about the role of soil seedbanks in the
dynamic of extensive green roof plant communities. The purpose of this study
was to analyze the seedbank that developed after 4 years of an extensive green
roof analog to dry grassland plant community, seeded with 29 species. We aimed
to understand the contribution of seedbank to the resilience of vegetation to
harsh conditions of the roof and to colonization by surrounding spontaneous
species. We monitored the plant species cover in 36 plots during 4 years in
June (between 2018 and 2021), and sampled the seedbank in February 2021. Our
results showed that the soil seedbank was dominated by transient spontaneous
ruderals species, while the standing vegetation was still dominated by seeded
grassland species. We found that seeded grassland species had poor seedbank
stock, similar to their natural environments. The similarity index between the
standing vegetation and the seedbank increased over time, and we measured
a significant correlation between dominant species cover and their seedbank
density. Spontaneous species cover was not correlated to the proportion of soil
not colonized by seeded species cover, indicating that gaps in vegetation did
not influence the development of spontaneous species. Our findings highlight
the importance of seedbank in the dynamic of green roof vegetation and
demonstrate that analogous habitat species exhibit similar behavior as in their
natural environments
Research Center/Unit :
TERRA Research Centre. Biodiversité et Paysage - ULiège
Disciplines :
Environmental sciences & ecology
Author, co-author :
Rivière, Lucie ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Sellier, Alizé
Dutoit, Thierry; Biodiversity and Landscape, TERRA Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Vidaller, Christel; Biodiversity and Landscape, TERRA Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium ; Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), UMR Avignon University, CNRS, Aix-Marseille University, IRD, Avignon, France
Buisson, Elise; Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), UMR Avignon University, CNRS, Aix-Marseille University, IRD, Avignon, France
Mahy, Grégory ; Université de Liège - ULiège > TERRA Research Centre > Biodiversité et Paysage ; Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), UMR Avignon University, CNRS, Aix-Marseille University, IRD, Avignon, France
Language :
English
Title :
The contribution of seedbank to the green roof plant community dynamics analogous to semi-natural grasslands
Publication date :
01 June 2023
Journal title :
Frontiers in Ecology and Evolution
eISSN :
2296-701X
Publisher :
Frontiers Media S.A., Switzerland
Volume :
11
Pages :
10
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
11. Sustainable cities and communities
Funders :
ULiège. ARC - Université de Liège. Actions de Recherche Concertées
Albrecht H. Elisabeth E. Thomas L. Clara T. (2011). The soil seed bank and its relationship to the established vegetation in urban wastelands. Landsc. Urban Plan. 100 87–97. 10.1016/j.landurbplan.2010.11.011
Basto S. Thompson K. Grime J. Fridley J. Calhim S. Askew A. et al. (2018). Severe effects of long-term drought on calcareous grassland seed banks. NPJ Clim. Atmos. Sci. 1:1. 10.1038/s41612-017-0007-3
Bates A. Sadler J. P. Mackay R. (2013). Vegetation development over four years on two green roofs in the UK. Urban For. Urban Green. 12 98–108. 10.1016/j.ufug.2012.12.003
Bekker R. M. Bakker J. P. Grandin U. Kalamees R. Milberg P. Poschlod P. et al. (1998). Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Funct. Ecol. 12 834–842. 10.1046/j.1365-2435.1998.00252.x
Bisteau E. Mahy G. (2005). Vegetation and seed bank in a calcareous grassland restored from a Pinus forest. Appl. Veg. Sci. 8 167–174. 10.1658/1402-2001
Bossuyt B. Butaye J. Honnay O. (2006). Seed bank composition of open and overgrown calcareous grassland soils—a case study from southern Belgium. J. Environ. Manag. 79 364–371. 10.1016/j.jenvman.2005.08.005 16337080
Bradbury C. (2021). Functional difference in plant communities as a driver of green roof ecosystem services. Ph.D. thesis. Halifax, NS: Saint Mary University. Available online at: http://library2.smu.ca/xmlui/handle/01/29518
Brown C. Lundholm J. (2015). Microclimate and substrate depth influence green roof plant community dynamics. Landsc. Urban Plann. 143 134–142. 10.1016/j.landurbplan.2015.07.009
Butler C. Orians C. (2009). Session 3.3: Natives vs. non-natives, the debate on the merits of each continues. Conf. Proc. 1–14.
Christoffoleti P. J. Caetano R. S. X. (1998). Soil seed banks. Sci. Agric. 55 74–78. 10.1590/S0103-90161998000500013
Davies A. Waite S. (1998). The persistence of calcerous grassland species in the soil seed bank under developing and established scrub. Plant Ecol. 136 27–39. 10.1023/A:1009759227900
Delescaille L.-M. Delaite S. (2011). Latlas floristique de wallonie: Où en est-on? Adoxa 68 17–19.
Dunnett N. Nagase A. Hallam A. (2008). The dynamics of planted and colonising species on a green roof over six growing seasons 2001-2006: Influence of substrate depth. Urban Ecosyst. 11 373–384. 10.1007/s11252-007-0042-7
Durhman A. Bradley Rowe D. Rugh C. L. (2007). Effect of substrate depth on initial growth, coverage, and survival of 25 succulent green roof plant taxa. HortScience 42 588–595. 10.21273/HORTSCI.42.3.588 35581909
Dutoit T. Alard D. (1996). “Chapitre second. Mécanisme d’une succession végétale secondaire en pelouse calcicole: Une approche historique,” in Dynamique et gestion des pelouses calcaires de haute-normandie, Hors collection, ed. Antilogus P. (Mont-Saint-Aignan: Presses universitaires de Rouen et du Havre), 91–108.
Eriksson Å. Eriksson O. (1997). Seedling recruitment in semi-natural pastures: The effects of disturbance, seed size, phenology and seed bank. Nord. J. Bot. 17 469–482. 10.1111/j.1756-1051.1997.tb00344.x
Grime J. P. (1988). “The C-S-R model of primary plant strategies — origins, implications and tests,” in Plant evolutionary biology, eds Gottlieb L. D. Jain S. K. (Dordrecht: Springer), 371–393. 10.1007/978-94-009-1207-6_14
Heim A. Lundholm J. (2014). The effects of substrate depth heterogeneity on plant species coexistence on an extensive green roof. Ecol. Eng. 68 184–188. 10.1016/j.ecoleng.2014.03.023
Kalamees R. Zobel M. (2002). The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology 83 1017–1025. 10.2307/3071910
Kleyer M. Bekker R. M. I Knevel C. Bakker J. P. Thompson K. Sonnenschein M. et al. (2008). The LEDA traitbase: A database of life-history traits of the northwest European flora. J. Ecol. 96 1266–1274. 10.1111/j.1365-2745.2008.01430.x
Köhler M. (2006). Long-term vegetation research on two extensive green roofs in Berlin. Urban Habitats 4 3–26.
Köhler M. Poll P. H. (2010). Long-term performance of selected old berlin greenroofs in comparison to younger extensive greenroofs in Berlin. Ecol. Eng. 36 722–729. 10.1016/j.ecoleng.2009.12.019
Köppen W. (1923). Die klimate der erde: Grundriss der klimakunde. Die klimate der erde. Berlin: Walter de Gruyter & Co. 10.1515/9783111491530
Kowarik I. (2011). Novel urban ecosystems, biodiversity, and conservation. Environ. Pollut. 159 1974–1983. 10.1016/j.envpol.2011.02.022 21435761
Lambinon J. Delvosalle L. Duvigneaud J. (2012). Nouvelle flore de la belgique, du grand-duché de luxembourg, du nord de la France et des régions voisines, 6 Edn. Meise: Editions du Patrimoine du Jardin Botanique National de Belgique.
Lundholm J. Richardson P. J. (2010). MINI-REVIEW: Habitat analogues for reconciliation ecology in urban and industrial environments: Habitat analogues. J. Appl. Ecol. 47 966–975. 10.1111/j.1365-2664.2010.01857.x
Lundholm J. T. (2006). Green roofs and facades: A habitat template approach. Urban Habitats 4 87–101.
Madre F. Vergnes A. Machon N. Clergeau P. (2014). Green roofs as habitats for wild plant species in urban landscapes: First insights from a large-scale sampling. Landsc. Urban Plan. 122 100–107. 10.1016/j.landurbplan.2013.11.012
Milberg P. Persson T. S. (1994). Soil seed bank and species recruitment in road verge grassland vegetation. Ann. Bot. Fenn. 31 155–162.
Monty A. Jorion A. Pitz C. Géron C. Mahy G. (2019). Alien invasive plants in Belgian limestone quarries. Biotechnol. Agron. Soc. Environ. 3 160–164. 10.25518/1780-4507.17984
Oberndorfer E. Lundholm J. Bass B. Coffman R. R. Doshi H. Dunnett N. et al. (2007). Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 57 823–833. 10.1641/B571005
Olly L. Bates A. J. Sadler J. P. Mackay R. (2011). An initial experimental assessment of the influence of substrate depth on floral assemblage for extensive green roofs. Urban For. Urban Green. 10 311–316. 10.1016/j.ufug.2011.07.005
Perrier X. Flori A. Bonnot F. (2003). Data analysis methods. In genetic diversity of cultivated tropical plants, trans by Hamon P. Seguin M. Perrier X. Glaszmann J.C.. Enfield: Science Publishers, 43–76.
Piqueray J. Bisteau E. Bottin G. Mahy G. (2007). Plant communities and species richness of the calcareous grasslands in southeast Belgium. Belgian J. Bot. 140 157–173.
R Core Team (2022). Methodology reference. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Rivière L. Delruelle A. Reniers J. Boisson S. Mahy G. (2022). Disentangling dynamics of green roof vegetation analogue to dry grassland over 3 years: Plant and substrate response to microenvironmental variations. J. Living Archit. 9 1–17. 10.46534/jliv.2022.09.02.001
Roulston T. Heim A. Lundholm J. (2020). Heterogeneous substrate depth supports greater functional diversity with comparable stormwater retention and substrate temperature services to sedum-dominant green roofs. J. Living Archit. 7 19–39. 10.46534/jliv.2020.07.02.019
Šerá B. Šerý M. (2004). Number and weight of seeds and reproductive strategies of herbaceous plants. Folia Geobot. 39 27–40. 10.1007/BF02803262
Service Fédéral Belge (2019). Climat.be: Le climat en Belgique. Available online at: https://www.climat.be/fr-be/changements-climatiques/en-belgique/climat-en-belgique/ (accessed April 17, 2019).
Sutton R. Harrington J. A. Skabelund L. MacDonagh P. Coffman R. R. Koch G. (2012). Prairie-based green roofs: Literature, templates, and analogs. J. Green Build. 7 143–172. 10.3992/jgb.7.1.143
Sutton R. Lambrinos J. (2015). “Green roof ecosystems: Summary and synthesis,” in Green roof ecosystems ecological studies, ed. Sutton R. K. (Cham: Springer International Publishing), 423–440. 10.1007/978-3-319-14983-7_17
Tallent-Halsell N. Watt M. S. (2009). The invasive Buddleja davidii (butterfly bush). Bot. Rev. 75 292–325. 10.1007/s12229-009-9033-0
Thompson K. Bakker J. P. Bekker R. M. (1997). The soil seed banks of North West Europe: Methodology, density and longevity. Vol. 7. Seed science research 3. Cambridge: Cambridge University Press.
Thuring C. Dunnett N. P. (2019). Persistence, loss and gain: Characterising mature green roof vegetation by functional composition. Landsc. Urban Plan. 185 228–236. 10.1016/j.landurbplan.2018.10.026
Thuring C. Grant G. (2015). The biodiversity of temperate extensive green roofs: A review of research and practice. Isr. J. Ecol. Evol. 62 44–57. 10.1080/15659801.2015.1091190
Vandvik V. Klanderud K. Meineri E. Måren I. E. Töpper J. (2016). Seed banks are biodiversity reservoirs: Species–area relationships above versus below ground. Oikos 125 218–228. 10.1111/oik.02022
Vanstockem J. Ceusters C. Van Dyck K. Somers B. Hermy M. (2018). Is there more than meets the eye? Seed bank analysis of a typical novel ecosystem, the extensive green roof. Appl. Veg. Sci. 21 419–430. 10.1111/avsc.12383
Vanstockem J. Somers B. Hermy M. (2019). Weeds and gaps on extensive green roofs: Ecological insights and recommendations for design and maintenance. Urban For. Urban Green. 46:126484. 10.1016/j.ufug.2019.126484
Willems J. H. Bik L. P. M. (1998). Restoration of high species density in calcareous grassland: The role of seed rain and soil seed bank. Appl. Veg. Sci. 1 91–100. 10.2307/1479088
Williams N. S. G. Lundholm J. Scott MacIvor J. (2014). FORUM: Do green roofs help urban biodiversity conservation? J. Appl. Ecol. 51 1643–1649. 10.1111/1365-2664.12333