habitat; Late Pleistocene; Microtus sp.; mitochondrial DNA; paleoclimate; small mammals; Ecology, Evolution, Behavior and Systematics; Ecology
Abstract :
[en] Aim: Many species experienced population turnover and local extinction during the Late Pleistocene. In the case of megafauna, it remains challenging to disentangle climate change and the activities of Palaeolithic hunter-gatherers as the main cause. In contrast, the impact of humans on rodent populations is likely to be negligible. This study investigated which climatic and/or environmental factors affect the population dynamics of the common vole. This temperate rodent is widespread across Europe and was one of the most abundant small mammal species throughout the Late Pleistocene. Location: Europe. Taxon: Common vole (Microtus arvalis). Methods: We generated a dataset comprised of 4.2 kb long fragment of mitochondrial DNA (mtDNA) from 148 ancient and 51 modern specimens sampled from multiple localities across Europe and covering the last 60 thousand years (ka). We used Bayesian inference to reconstruct their phylogenetic relationships and to estimate the age of the specimens that were not directly dated. Results: We estimated the time to the most recent common ancestor of all last glacial and extant common vole lineages to be 90 ka ago and the divergence of the main mtDNA lineages present in extant populations to between 55 and 40 ka ago, which is earlier than most previous estimates. We detected several lineage turnovers in Europe during the period of high climate variability at the end of Marine Isotope Stage 3 (MIS 3; 57–29 ka ago) in addition to those found previously around the Pleistocene/Holocene transition. In contrast, data from the Western Carpathians suggest continuity throughout the Last Glacial Maximum (LGM) even at high latitudes. Main Conclusions: The main factor affecting the common vole populations during the last glacial period was the decrease in open habitat during the interstadials, whereas climate deterioration during the LGM had little impact on population dynamics. This suggests that the rapid environmental change rather than other factors was the major force shaping the histories of the Late Pleistocene faunas.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Baca, Mateusz ; Centre of New Technologies, University of Warsaw, Warszawa, Poland
Popović, Danijela ; Centre of New Technologies, University of Warsaw, Warszawa, Poland
Lemanik, Anna ; Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
Bañuls-Cardona, Sandra ; Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain
Conard, Nicholas J. ; Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany ; Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
Cuenca-Bescós, Gloria ; Aragosaurus-IUCA-Earth Sciences Department, University of Zaragoza, Zaragoza, Spain
Desclaux, Emmanuel ; Laboratoire départemental de Préhistoire du Lazaret, CEPAM – UMR 7264 CNRS, Nice, France
Fewlass, Helen ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology Leipzig, Leipzig, Germany
Garcia, Jesus T. ; IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain
Hadravova, Tereza ; Department of Zoology, Charles University, Prague, Czech Republic
Heckel, Gerald ; Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
Horáček, Ivan ; Department of Zoology, Charles University, Prague, Czech Republic
Knul, Monika Vlasta ; Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, United Kingdom
Lebreton, Loïc ; Histoire Naturelle de l'Homme Préhistorique (HNHP), UMR 7194, Department Homme et Environnement du Muséum National d'Histoire Naturelle, MNHN-CNRS-UPVD, Musée de l'Homme, Paris, France
López-García, Juan Manuel ; Departament d'Història i Història de l'Art, Universitat Rovira i Virgili, Tarragona, Spain ; Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona, Spain
Luzi, Elisa ; Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
Marković, Zoran ; Natural History Museum, Belgrade, Serbia
Mauch Lenardić, Jadranka ; Institute for Quaternary Palaeontology and Geology, Croatian Academy of Sciences and Arts, Zagreb, Croatia
Murelaga, Xabier ; Department of Geology University of the Basque Country UPV/EHU, Bilbao, Spain
Noiret, Pierre ; Université de Liège - ULiège > Département des sciences historiques > Archéologie préhistorique
Petculescu, Alexandru ; Institute of Speleology “E. Racovitza”, Bucharest, Romania & Romanian Institute of Science and Technology, Cluj-Napoca, Romania
Popov, Vasil ; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sophia, Bulgaria
Rhodes, Sara E. ; Institut für Naturwissenschaftliche Archäologie, Universität Tübingen, Tübingen, Germany ; Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
Ridush, Bogdan ; Department of Physical Geography, Geomorphology and Paleogeography, Yuriy Fed'kovych Chernivtsi National University, Chernivtsi, Ukraine
Royer, Aurélien ; Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, Dijon, France
Stewart, John R. ; Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
Stojak, Joanna ; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
Talamo, Sahra ; Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
Wang, Xuejing ; Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
Wójcik, Jan M. ; Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
Nadachowski, Adam ; Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
ERDF - European Regional Development Fund MICINN - Ministerio de Ciencia e Innovacion SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung AvH - Alexander von Humboldt-Stiftung
Funding text :
This research was supported by the Polish National Science Centre grants no.: 2015/19/D/NZ8/03878 to Mateusz Baca and 2017/25/B/NZ8/02005 to Adam Nadachowski. Partial funding came from grant 31003A_176209 from the Swiss National Science Foundation to Gerald Heckel. Xabier Murelaga was supported by the IT1602‐22 grant from Basque Science System. Fieldwork at Roc‐en‐Pail (France) was granted by the French Ministry of Culture through the Pays‐de‐la‐Loire Regional Archaeology Service and in 2016 by the Mécène & Loire Fundation. Juan Manuel López‐García was supported by a Ramón y Cajal contract (RYC‐2016‐19386) with financial support from the Spanish Ministry of Science and Innovation. Elisa Luzi was supported by the Alexander von Humboldt Foundation with a Humboldt Research Fellowship for postdoctoral researchers (ESP1209403HFST‐P) Analysis of modern Spanish specimens was supported by the Spanish Ministry of Science and Innovation and the Spanish Ministry of Economy, Industry and Competitiveness & European Regional Development Fund (FEDER, EU), projects CGL2011‐30274 and CGL2015‐71255‐P (MINECO‐FEDER, EU). Sahra Talamo received funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. 803147 RESOLUTION, https://site.unibo.it/resolution‐erc/en ). Alexandru Petculescu acknowledges funding by the Romanian Research Authority through grants PCCF 16/2016, PCE 2282/2020, and EEA Grant 126/2018. We also acknowledge the late Rebbeca Miller, the director of Trou Al′Wesse excavations and the “AWaP—Agence Wallonne du Patrimoine” as the main funding institution of the work at the site. No modern specimens were sampled as part of this project. Refer to Table S2 for the articles where the studied specimens were first published and appropriate permits are described. No permits were required to sample subfossil materials.This research was supported by the Polish National Science Centre grants no.: 2015/19/D/NZ8/03878 to Mateusz Baca and 2017/25/B/NZ8/02005 to Adam Nadachowski. Partial funding came from grant 31003A_176209 from the Swiss National Science Foundation to Gerald Heckel. Xabier Murelaga was supported by the IT1602-22 grant from Basque Science System. Fieldwork at Roc-en-Pail (France) was granted by the French Ministry of Culture through the Pays-de-la-Loire Regional Archaeology Service and in 2016 by the Mécène & Loire Fundation. Juan Manuel López-García was supported by a Ramón y Cajal contract (RYC-2016-19386) with financial support from the Spanish Ministry of Science and Innovation. Elisa Luzi was supported by the Alexander von Humboldt Foundation with a Humboldt Research Fellowship for postdoctoral researchers (ESP1209403HFST-P) Analysis of modern Spanish specimens was supported by the Spanish Ministry of Science and Innovation and the Spanish Ministry of Economy, Industry and Competitiveness & European Regional Development Fund (FEDER, EU), projects CGL2011-30274 and CGL2015-71255-P (MINECO-FEDER, EU). Sahra Talamo received funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement No. 803147 RESOLUTION, https://site.unibo.it/resolution-erc/en). Alexandru Petculescu acknowledges funding by the Romanian Research Authority through grants PCCF 16/2016, PCE 2282/2020, and EEA Grant 126/2018. We also acknowledge the late Rebbeca Miller, the director of Trou Al′Wesse excavations and the “AWaP—Agence Wallonne du Patrimoine” as the main funding institution of the work at the site. No modern specimens were sampled as part of this project. Refer to Table S2 for the articles where the studied specimens were first published and appropriate permits are described. No permits were required to sample subfossil materials.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Baca, M., Nadachowski, A., Lipecki, G., Mackiewicz, P., Marciszak, A., Popović, D., Socha, P., Stefaniak, K., & Wojtal, P. (2017). Impact of climatic changes in the Late Pleistocene on migrations and extinction of mammals in Europe: Four case studies. Geological Quarterly, 61(2), 291–304. https://doi.org/10.7306/gq.1319
Baca, M., Popović, D., Baca, K., Lemanik, A., Doan, K., Horáček, I., López-García, J. M., Bañuls-Cardona, S., Pazonyi, P., Desclaux, E., Crégut-Bonnoure, E., Berto, C., Mauch Lenardić, J., Miękina, B., Murelaga, X., Cuenca-Bescós, G., Krajcarz, M., Marković, Z., Petculescu, A., … Nadachowski, A. (2020). Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes—Evidence from ancient DNA. Quaternary Science Reviews, 233, 106239. https://doi.org/10.1016/j.quascirev.2020.106239
Baca, M., Popović, D., Lemanik, A., Baca, K., Horáček, I., & Nadachowski, A. (2019). Highly divergent lineage of narrow-headed vole from the late Pleistocene Europe. Scientific Reports, 9(1), 17799. https://doi.org/10.1038/s41598-019-53937-1
Baca, M., Popović, D., Lemanik, A., Fewlass, H., Talamo, S., Zima, J., Ridush, B., Popov, V., & Nadachowski, A. (2021). The Tien Shan vole (Microtus ilaeus; Rodentia: Cricetidae) as a new species in the late Pleistocene of Europe. Ecology and Evolution, 11, 16113–16125.
Berto, C., López-García, J. M., & Luzi, E. (2019). Changes in the late Pleistocene small-mammal distribution in the Italian peninsula. Quaternary Science Reviews, 225, 106019. https://doi.org/10.1016/j.quascirev.2019.106019
Berto, C., Nadachowski, A., Pereswiet-Soltan, A., Lemanik, A., & Kot, M. (2021). The middle Pleistocene small mammals from the lower layers of Tunel Wielki cave (Kraków-Częstochowa upland): An early Toringian assemblage in Poland. Quaternary International, 577, 52–70. https://doi.org/10.1016/j.quaint.2020.10.023
Berto, C., Szymanek, M., Blain, H.-A., Pereswiet-Soltan, A., Krajcarz, M., & Kot, M. (2022). Small vertebrate and mollusc community response to the latest Pleistocene-Holocene environment and climate changes in the Kraków-Częstochowa upland (Poland, Central Europe). Quaternary International, 633, 6–25. https://doi.org/10.1016/j.quaint.2021.09.010
Beysard, M., & Heckel, G. (2014). Structure and dynamics of hybrid zones at different stages of speciation in the common vole (Microtus arvalis). Molecular Ecology, 23(3), 673–687. https://doi.org/10.1111/mec.12613
Braaker, S., & Heckel, G. (2009). Transalpine colonisation and partial phylogeographic erosion by dispersal in the common vole (Microtus arvalis). Molecular Ecology, 18(11), 2528–2531. https://doi.org/10.1111/j.1365-294X.2009.04189.x
Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360. https://doi.org/10.1017/S0033822200033865
Bužan, E. V., Förster, D. W., Searle, J. B., & Kryštufek, B. (2010). A new cytochrome b phylogroup of the common vole (Microtus arvalis) endemic to the Balkans and its implications for the evolutionary history of the species. Biological Journal of the Linnean Society, 100(4), 788–796. https://doi.org/10.1111/j.1095-8312.2010.01451.x
Carrión, J. S., Fernández, S., González-Sampériz, P., López-Merino, L., Carrión-Marco, Y., Gil-Romera, G., Badal, E., Carrión-Marco, Y., López-Merino, L., López-Sáez, J. A., Fierro, E., & Burjachs, F. (2010). Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review of Palaeobotany and Palynology, 162(3), 458–475. https://doi.org/10.1016/j.revpalbo.2009.12.007
Chaline, J. (1972). Les rongeures du pléistocène moyen et supérieur de France: (systématique, biostratigraphie, paléoclimatologie). Cahiers de Paléontologie. CNRS, 410 p.
Cooper, A., Turney, C., Hughen, K. A., Barry, W., McDonald, H. G., & Bradshaw, C. J. A. (2015). Abrupt warming events drove late Pleistocene Holarctic megafaunal turnover. Science, 349, 1–8. https://doi.org/10.1126/science.aac4315
Dabney, J., Knapp, M., Glocke, I., Gansauge, M.-.T., Weihmann, A., Nickel, B., Valdiosera, C., García, N., Pääbo, S., Arsuaga, J.-L., & Meyer, M. (2013). Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15758–15763. https://doi.org/10.1073/pnas.1314445110
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109
Delattre, P., Giraudoux, P., Baudry, J., Quere, J. P., & Fichet-Calvet, E. (1996). Effect of landscape structure on common vole (Microtus arvalis) distribution and abundance at several space scales. Landscape Ecology, 288(5), 279–288.
Duchene, S., Lemey, P., Stadler, T., Ho, S. Y. W., Duchene, D. A., Dhanasekaran, V., & Baele, G. (2020). Bayesian evaluation of temporal signal in measurably evolving populations. Molecular Biology and Evolution, 37(11), 3363–3379. https://doi.org/10.1093/molbev/msaa163
Ehrich, D., Jorde, P. E., Krebs, C. J., Kenney, A. J., Stacy, J. E., & Stenseth, N. C. (2001). Spatial structure of lemming populations (Dicrostonyx groenlandicus) fluctuating in density. Molecular Ecology, 10(2), 481–495. https://doi.org/10.1046/j.1365-294X.2001.01229.x
Fellows Yates, J. A., Drucker, D. G., Reiter, E., Heumos, S., Welker, F., Münzel, S. C., Wojtal, P., Lázničková-Galetová, M., Conard, N. J., Herbig, A., Bocherens, H., & Krause, J. (2017). Central European woolly mammoth population dynamics: Insights from Late Pleistocene mitochondrial genomes. Scientific Reports, 7(1), 17714. https://doi.org/10.1038/s41598-017-17723-1
Fewlass, H., Tuna, T., Fagault, Y., Hublin, J. J., Kromer, B., Bard, E., & Talamo, S. (2019). Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41557-8
Fink, S., Excoffier, L., & Heckel, G. (2004). Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptations. Molecular Ecology, 13, 3501–3514. https://doi.org/10.1111/j.1365-294X.2004.02351.x
Fischer, M. C., Foll, M., Heckel, G., & Excoffier, L. (2014). Continental-scale footprint of balancing and positive selection in a small rodent (Microtus arvalis). PLoS ONE, 9(11), e112332. https://doi.org/10.1371/journal.pone.0112332
Folkertsma, R., Westbury, M. V., Eccard, J. A., & Hofreiter, M. (2018). The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae). Mitochondrial DNA Part B: Resources, 3, 446–447.
Gansauge, M. T., Aximu-Petri, A., Nagel, S., & Meyer, M. (2020). Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nature Protocols, 15(8), 2279–2300. https://doi.org/10.1038/s41596-020-0338-0
García, J. T., Domínguez-Villaseñor, J., Alda, F., Calero-Riestra, M., Pérez Olea, P., Fargallo, J. A., Martínez-Padilla, J., Herranz, J., Oñate, J. J., Santamaría, A., Motro, Y., Attie, C., Bretagnolle, V., Delibes, J., & Viñuela, J. (2020). A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe. Journal of Zoological Systematics and Evolutionary Research, 58(1), 459–474. https://doi.org/10.1111/jzs.12323
Gretzinger, J., Molak, M., Reiter, E., Pfrengle, S., Urban, C., Neukamm, J., Blant, M., Conard, N. J., Cupillard, C., Dimitrijević, V., Drucker, D. G., Hofman-Kamińska, E., Kowalczyk, R., Krajcarz, M. T., Krajcarz, M., Münzel, S. C., Peresani, M., Romandini, M., Rufí, I., … Schuenemann, V. J. (2019). Large-scale mitogenomic analysis of the phylogeography of the Late Pleistocene cave bear. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-47073-z
Guiter, F., Andrieu-Ponel, V., de Beaulieu, J.-.L., Cheddadi, R., Calvez, M., Ponel, P., Reille, M., Keller, T., & Goeury, C. (2003). The last climatic cycles in Western Europe: A comparison between long continuous lacustrine sequences from France and other terrestrial records. Quaternary International, 111, 59–74. https://doi.org/10.1016/S1040-6182(03)00015-6
Haynes, S., Jaarola, M., & Searle, J. B. (2003). Phylogeography of the common vole (Microtus arvalis) with particular emphasis on the colonization of the Orkney archipelago. Molecular Ecology, 12(4), 951–956. https://doi.org/10.1046/j.1365-294X.2003.01795.x
Heckel, G., Burri, R., Fink, S., Desmet, J.-F., & Excoffier, L. (2005). Genetic structure and colonization processes in European populations of the common vole, Microtus arvalis. Evolution; International Journal of Organic Evolution, 59(10), 2231–2242. https://doi.org/10.1554/05-255.1
Helmens, K. F. (2014). The last interglacial-glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe. Quaternary Science Reviews, 86, 115–123. https://doi.org/10.1016/j.quascirev.2013.12.012
Horáček, I., & Ložek, V. (1988). Palaeozoology and the mid-European quaternary past: Scope of the approach and selected results. Rozpravy ČSAV, Řada MPV.
Jacob, J., Manson, P., Barfknecht, R., & Fredricks, T. (2014). Common vole (Microtus arvalis) ecology and management: Implications for risk assessment of plant protection products. In Pest management science (Vol. 70, pp. 869–878). John Wiley & Sons, Ltd. https://doi.org/10.1002/ps.3695
Jánossy, D. (1986). Pleistocene vertebrate faunas of Hungary. Developments in palaeontology and stratigraphy. Elsevier. https://doi.org/10.1016/0047-2484(89)90045-6
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F., & Orlando, L. (2013). MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics, 29(13), 1682–1684. https://doi.org/10.1093/bioinformatics/btt193
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Kotlík, P., Marková, S., Horníková, M., Escalante, M. A., & Searle, J. B. (2022). The Bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Frontiers in Ecology and Evolution, 10, 1–14. https://doi.org/10.3389/fevo.2022.866605
Kučera, J., Suvova, Z., & Horáček, I. (2009). Early middle Pleistocene glacial community of rodents (Rodentia): Stránská skála cave (Czech Republic). Lynx, 40, 43–69.
Lemanik, A., Baca, M., Wertz, K., Socha, P., Popović, D., Tomek, T., Lipecki, G., Kraszewska, A., Miękina, B., Żeromska, A., Pereswiet-Soltan, A., Szyndlar, Z., Cieśla, M., Valde-Nowak, P., Mackiewicz, P., & Nadachowski, A. (2020). The impact of major warming at 14.7 ka on environmental changes and activity of final Palaeolithic hunters at a local scale (Orawa-Nowy Targ Basin, Western Carpathians, Poland). Archaeological and Anthropological Sciences, 12(3), 1–21. https://doi.org/10.1007/s12520-020-01020-6
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics (Oxford, England), 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. R., Durbin, R., & Subgroup, 1000 Genome Project Data Processing. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
Lischer, H. E. L., Excoffier, L., & Heckel, G. (2014). Ignoring heterozygous sites biases phylogenomic estimates of divergence times: Implications for the evolutionary history of Microtus voles. Molecular Biology and Evolution, 31(4), 817–831. https://doi.org/10.1093/molbev/mst271
Lorenzen, E. D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K. A., Ugan, A., Borregaard, M. K., Gilbert, M. T. P., Nielsen, R., Ho, S. Y. W., Goebel, T., Graf, K. E., Byers, D., Stenderup, J. T., Rasmussen, M., Campos, P. F., Leonard, J. A., Koepfli, K.-P., … Willerslev, E. (2011). Species-specific responses of Late Quaternary megafauna to climate and humans. Nature, 479(7373), 359–364. https://doi.org/10.1038/nature10574
Martínková, N., Barnett, R., Cucchi, T., Struchen, R., Pascal, M., Pascal, M., Fischer, M. C., Higham, T., Brace, S., Ho, S. Y. W., Quéré, J.-P., O’Higgins, P., Excoffier, L., Heckel, G., Rus Hoelzel, A., Dobney, K. M., & Searle, J. B. (2013). Divergent evolutionary processes associated with colonization of offshore islands. Molecular Ecology, 22(20), 5205–5220. https://doi.org/10.1111/mec.12462
Maul, L. C., & Markova, A. K. (2007). Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe. Quaternary International, 160(1), 81–99. https://doi.org/10.1016/j.quaint.2006.09.010
Meyer, M., & Kircher, M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols, 5(6), t5448. https://doi.org/10.1101/pdb.prot5448
Milne, I., Stephen, G., Bayer, M., Cock, P. J. A., Pritchard, L., Cardle, L., Shaw, P. D., & Marshall, D. (2013). Using tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics, 14(2), 193–202. https://doi.org/10.1093/bib/bbs012
Münzel, S. C., Stiller, M., Hofreiter, M., Mittnik, A., Conard, N. J., & Bocherens, H. (2011). Pleistocene bears in the Swabian Jura (Germany): Genetic replacement, ecological displacement, extinctions and survival. Quaternary International, 245(2), 1–13. https://doi.org/10.1016/j.quaint.2011.03.060
Nadachowski, A. (1989). Origin and history of the present rodent fauna in Poland based on fossil evidence. Acta Theriologica, 34(2), 37–53.
Palkopoulou, E., Baca, M., Abramson, N. I., Sablin, M., Socha, P., Nadachowski, A., Prost, S., Germonpré, M., Kosintsev, P., Smirnov, N. G., Vartanyan, S., Ponomarev, D., Nyström, J., Nikolskiy, P., Jass, C. N., Litvinov, Y. N., Kalthoff, D. C., Grigoriev, S., Fadeeva, T., … Dalén, L. (2016). Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Global Change Biology, 22(5), 1710–1721. https://doi.org/10.1111/gcb.13214
Palkopoulou, E., Dalen, L., Lister, A. M., Vartanyan, S., Sablin, M., Sher, A., Nyström Edmark, V., Barnes, I., Germonpré, M., Brandström, D., & Thomas, J. A. (2013). Holarctic genetic structure and range dynamics in the woolly mammoth. Proceedings of the Royal Society B: Biological Sciences, 280, 20131910. https://doi.org/10.1098/rspb.2013.1910
Pazonyi, P. (2004). Mammalian ecosystem dynamics in the Carpathian Basin during the last 27,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(3–4), 295–314. https://doi.org/10.1016/j.palaeo.2004.06.008
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., … Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., … Talamo, S. (2020). The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62(4), 725–757. https://doi.org/10.1017/rdc.2020.41
Richard, M., Falguères, C., Valladas, H., Ghaleb, B., Pons-Branchu, E., Mercier, N., Richter, D., & Conard, N. J. (2019). New electron spin resonance (ESR) ages from Geißenklösterle cave: A chronological study of the middle and early upper Paleolithic layers. Journal of Human Evolution, 133, 133–145. https://doi.org/10.1016/j.jhevol.2019.05.014
Royer, A., Montuire, S., Legendre, S., Discamps, E., Jeannet, M., & Lécuyer, C. (2016). Investigating the influence of climate changes on rodent communities at a regional-scale (MIS 1-3, southwestern France). PLoS ONE, 11(1), e0145600. https://doi.org/10.1371/journal.pone.0145600
Saxenhofer, M., Labutin, A., White, T. A., & Heckel, G. (2022). Host genetic factors associated with the range limit of a European hantavirus. Molecular Ecology, 31, 252–265. https://doi.org/10.1111/mec.16211
Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Research Notes, 9(1), 1–7. https://doi.org/10.1186/s13104-016-1900-2
Socha, P. (2014). Rodent palaeofaunas from Biśnik cave (Kraków-Częstochowa upland, Poland): Palaeoecological, palaeoclimatic and biostratigraphic reconstruction. Quaternary International, 326–327, 64–81. https://doi.org/10.1016/j.quaint.2013.12.027
Sommer, R. S., & Nadachowski, A. (2006). Glacial refugia of mammals in Europe: Evidence from fossil records. Mammal Review, 36(4), 251–265. https://doi.org/10.1111/j.1365-2907.2006.00093.x
Stewart, J. R., Lister, A. M., Barnes, I., & Dalén, L. (2010). Refugia revisited: Individualistic responses of species in space and time. Proceedings. Biological Sciences/The Royal Society, 277(1682), 661–671. https://doi.org/10.1098/rspb.2009.1272
Stojak, J., Borowik, T., Górny, M., McDevitt, A. D., & Wójcik, J. M. (2019). Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Research, 64(1), 19–29. https://doi.org/10.1007/s13364-018-0395-8
Stojak, J., McDevitt, A. D., Herman, J. S., Kryštufek, B., Uhlíková, J., Purger, J. J., Lavrenchenko, L. A., Searle, J. B., & Wójcik, J. M. (2016). Between the Balkans and the Baltic: Phylogeography of a common vole mitochondrial DNA lineage limited to Central Europe. PLoS ONE, 11(12), e0168621. https://doi.org/10.1371/journal.pone.0168621
Stojak, J., McDevitt, A. D., Herman, J. S., Searle, J. B., & Wójcik, J. M. (2015). Post-glacial colonization of eastern Europe from the Carpathian refugium: Evidence from mitochondrial DNA of the common vole Microtus arvalis. Biological Journal of the Linnean Society, 115(4), 927–939.
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), 1–5. https://doi.org/10.1093/ve/vey016
Tougard, C., Renvoisé, E., Petitjean, A., & Quéré, J.-P. (2008). New insight into the colonization processes of common voles: Inferences from molecular and fossil evidence. PLoS ONE, 3(10), e3532. https://doi.org/10.1371/journal.pone.0003532
Van Klinken, G. J. (1999). Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science, 26(6), 687–695. https://doi.org/10.1006/jasc.1998.0385
Vandenberghe, J., & van der Plicht, J. (2016). The age of the Hengelo interstadial revisited. Quaternary Geochronology, 32, 21–28. https://doi.org/10.1016/j.quageo.2015.12.004
Wacker, L., Bonani, G., Friedrich, M., Hajdas, I., Kromer, B., Němec, M., Ruff, M., Suter, M., Synal, H. A., & Vockenhuber, C. (2010). MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon, 52(2), 252–262. https://doi.org/10.1017/S0033822200045288
Wacker, L., Fahrni, S. M., Hajdas, I., Molnar, M., Synal, H. A., Szidat, S., & Zhang, Y. L. (2013). A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 294, 315–319. https://doi.org/10.1016/j.nimb.2012.02.009
Wacker, L., Němec, M., & Bourquin, J. (2010). A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268(7–8), 931–934. https://doi.org/10.1016/j.nimb.2009.10.067
Walther, G. R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2019–2024. https://doi.org/10.1098/rstb.2010.0021
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.