[en] Light triggers numerous non-image forming (NIF), or non-visual, biological effects. The brain correlates of these NIF effects have been investigated, notably using Magnetic Resonance Imaging (MRI) and short light exposures varying in irradiance and spectral quality. However, it is not clear whether having light in subsequent blocks may induce carry over effects of one light block onto the next, thus biasing the study. We reasoned that pupil light reflex (PLR) was an easy readout of one of the NIF effects of light that could be used to address this issue. We characterized the sustained PLR in 13 to 16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light [0.16 melanopic Equivalent Daylight Illuminance (mel EDI) lux] and polychromatic blue-enriched white light of three different levels [37, 92, 190 mel EDI lux]. As expected, higher melanopic irradiance was associated with larger sustained PLR in each cognitive domain. This result was stable over the light block sequence under higher melanopic irradiance levels as compared to lower ones. Exploratory frequency-domain analyses further revealed that PLR was more variable within a light block under lower melanopic irradiance levels. Importantly, PLR varied across tasks independently of the light condition pointing to a potential impact of the light history and/or cognitive context on PLR. Together, our results emphasize that the distinct contribution and adaptation of the different retinal photoreceptors influence the NIF effects of light and therefore potentially their brain correlates.
Disciplines :
Human health sciences: Multidisciplinary, general & others