[en] Quantum entanglement can be of different kinds [1] and classifying the
quantum states in this respect may represent a difficult challenge in
general multipartite systems. In particular, entanglement classes that
are inequivalent under stochastic local operations and classical communication (SLOCC) are of fundamental importance. For 𝑁-qubit
systems with 𝑁 > 3, there is an infinity of such SLOCC entanglement
classes [1] and it makes sense to gather them into a finite number
of families, as was done for symmetric states in Refs. [2,3] using two
distinct approaches (Majorana representation and algebraic geometry
tools, respectively). Here, we compare these two structures and identify whether they can be embedded into one another or not. To do
so, we formulate the structure of Ref. [2] in terms of 𝑘-secants and 𝑘-
tangents (𝑘 a positive integer) of the Veronese variety [3] and we prove
that only the 𝑘-tangent structuration provides a coherent structure
compatible with that of Ref. [3].
[1] W. Dür et al., Phys. Rev. A 62, 062314 (2000). [2] T. Bastin et
al., Phys. Rev. Lett. 103, 070503 (2009). [3] M. Sanz et al., J. Phys.
A: Math. Theor. 50, 195303 (2017)
Centre/Unité de recherche :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physique
Auteur, co-auteur :
Weelen, Tom ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Zenaïdi, Naïm ; Université de Liège - ULiège > Département de mathématique
Mathonet, Pierre ; Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Bastin, Thierry ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Langue du document :
Anglais
Titre :
Entanglement classification schemes : comparison between Majorana representation and algebraic geometry approaches
Date de publication/diffusion :
06 mars 2023
Nom de la manifestation :
DPG-Frühjahrstagung (DPG Spring Meeting) of the Atomic, Molecular, Quantum Optics and Photonics Section (SAMOP)
Lieu de la manifestation :
Hannover, Allemagne
Date de la manifestation :
Du 5 mars au 10 mars 2023
Manifestation à portée :
International
Peer review/Comité de sélection :
Editorial reviewed
Intitulé du projet de recherche :
Entanglement classification with algebraic geometry