[en] This paper provides an estimation of the hazard related to the presence of furan and five alkyl furans (2- and 3-methylfuran, 2-ethylfuran, 2,5- and 2,3-dimethylfuran) in foodstuffs available in the Belgian market. To achieve this objective, a specific sampling plan was designed to ensure that the samples collected (n = 1003) represent the diversity of the Belgian food chain. Herein, the concepts of the Hazard Ratio of a sample (HRs) and the Hazard Index of a sample (HIs) were introduced to primarily characterize the hazard related to the co-occurrence of these compounds. The HRs was measured as the ratio of the potential daily exposure to a substance (expressed in mg/Kg of food) to both the 10% reference dose level for chronic effects (expressed in mg/(kg b.w*day)) and the human standard weight (expressed in kg). Whereas the HIs is the sum of the HRs of compounds that affect the same target organ/system, a hazard index greater than one indicates a highly contaminated matrix that could induce a hazard. It is an alarm indicating that additional attention should be given to this matrix. This may involve additional analyses to confirm the high level, to identify sources, etc. It is also an alarm for the risk assessor to be very careful with flagged matrices and to avoid combination with other matrices. The HIs highlight a relatively low concern for all foods analyzed (HI median < 1.0) with a relatively higher suspected hazard for coffee drinks (HI median = 0.068, HI max = 0.57). This preliminary estimation of the potential hazard suggests that coffee beverages should be examined in more detail in a full risk assessment and that coffee consumption should be taken with caution given the levels of furan and alkylfurans reported in this study.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Alsafra, Zouheir; Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
Scholl, Georges; Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
De Meulenaer, Bruno; Department of Food Safety and Food Quality, Nutrifoodchem Unit, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
Eppe, Gauthier ; Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B-6c Sart-Tilman, B-4000 Liege, Belgium
Saegerman, Claude ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires (DMI) > Epidémiologie et analyse des risques appliqués aux sciences vétérinaires
Language :
English
Title :
Hazard Ratio and Hazard Index as Preliminary Estimators Associated to the Presence of Furans and Alkylfurans in Belgian Foodstuffs.
FPS Health Federal Public Service Health, Food Chain Safety and Environment
Funding text :
The research that yielded these results was funded by the Belgian Federal Public Service of Health, Food Chain Safety and Environment through the contract RT19/05 MEFURAN.
Crews C. Castle L. A review of the occurrence, formation and analysis of furan in heat-processed foods Trends Food Sci. Technol. 2007 18 365 372 10.1016/j.tifs.2007.03.006
Scholz G. Stadler R.H. Encyclopedia of Food Chemistry Melton L. Shahidi F. Varelis P. Elsevier Amsterdam, The Netherlands 2019 532 542
IARC Furan Monographs on the Evaluation of Carcinogenic Risks to Humans IARC Lyon, France 1995 393 407
Ravindranath V. Burka L.T. Boyd M.R. Reactive metabolites from the bioactivation of toxic methylfurans Science 1984 224 884 886 10.1126/science.6719117 6719117
US Food and Drug Administration Determination of Furan in Food FDA Washington, DC, USA 2004
Moser G.J. Foley J. Burnett M. Goldsworthy T.L. Maronpot R. Furan-induced dose-response relationships for liver cytotoxicity, cell proliferation, and tumorigenicity (furan-induced liver tumorigenicity) Exp. Toxicol. Pathol. 2009 61 101 111 10.1016/j.etp.2008.06.006 18809303
Hu C. Li R. Wang J. Liu Y. Wang J. Sun B. Untargeted metabolite profiling of liver in mice exposed to 2-methylfuran J. Food Sci. 2020 86 242 250 10.1111/1750-3841.15549
Peterson L.A. Cummings M.E. Chan J.Y. Vu C.C. Matter B.A. Identification of a cis-2-butene-1, 4-dial-derived glutathione conjugate in the urine of furan-treated rats Chem. Res. Toxicol. 2006 19 1138 1141 10.1021/tx060111x
Mogol B.A. Gökmen V. Kinetics of furan formation from ascorbic acid during heating under reducing and oxidizing conditions J. Agric. Food Chem. 2013 61 10191 10196 10.1021/jf402941t 24073627
Kim M.Y. Her J.-Y. Kim M.K. Lee K.-G. Formation and reduction of furan in a soy sauce model system Food Chem. 2015 189 114 119 10.1016/j.foodchem.2015.02.015
Owczarek-Fendor A. De Meulenaer B. Scholl G. Adams A. Van Lancker F. Yogendrarajah P. Uytterhoeven V. Eppe G. De Pauw E. Scippo M.-L. et al. Importance of fat oxidation in starch-based emulsions in the generation of the process contaminant furan J. Agric. Food Chem. 2010 58 9579 9586 10.1021/jf101671u
Fromberg A. Mariotti M.S. Pedreschi F. Fagt S. Granby K. Furan and alkylated furans in heat processed food, including home cooked products Czech J. Food Sci. 2014 32 443 448 10.17221/341/2013-CJFS
Morehouse K.M. Nyman P.J. McNeal T.P. Dinovi M.J. Perfetti G.A. Survey of furan in heat processed foods by headspace gas chromatography/mass spectrometry and estimated adult exposure Food Addit. Contam. 2008 25 259 264 10.1080/02652030701552949
Nie S.-P. Huang J.-G. Zhang Y.-N. Hu J.-L. Wang S. Shen M.-Y. Li C. Marcone M.F. Xie M.-Y. Analysis of furan in heat-processed foods in China by automated headspace gas chromatography-mass spectrometry (HS-GC-MS) Food Control 2013 30 62 68 10.1016/j.foodcont.2012.07.020
Lachenmeier D.W. Reusch H. Kuballa T. Risk assessment of furan in commercially jarred baby foods, including insights into its occurrence and formation in freshly home-cooked foods for infants and young children Food Addit. Contam. 2009 26 776 785 10.1080/02652030802714018 19680950
Liu Y.-T. Tsai S.-W. Assessment of dietary furan exposures from heat processed foods in Taiwan Chemosphere 2010 79 54 59 10.1016/j.chemosphere.2010.01.014
EFSA Risks for public health related to the presence of furan and methylfurans in food EFSA J. 2017 15 e05005
Scholl G. Humblet M.-F. Scippo M.-L. De Pauw E. Eppe G. Saegerman C. Preliminary assessment of the risk linked to furan ingestion by babies consuming only ready-to-eat food Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013 30 654 659 10.1080/19440049.2013.769137
Bianchi F. Careri M. Mangia A. Musci M. Development and validation of a solid phase micro-extraction-gas chromatography-mass spectrometry method for the determination of furan in baby-food J. Chromatogr. A 2006 1102 268 272 10.1016/j.chroma.2005.10.056 16297924
Altaki M. Santos F. Galceran M. Analysis of furan in foods by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry J. Chromatogr. A 2007 1146 103 109 10.1016/j.chroma.2007.01.104 17307192
Official Journal of the European Union Commission Recommendation (EU) 2022/495 of 25 March 2022 on Monitoring the Presence of Furan and Alkylfurans in Food Available online: http://data.europa.eu/eli/reco/2022/495/oj (accessed on 28 March 2022)
EFSA Call for Continuous Collection of Chemical Contaminants Occurrence Data in Food and Feed 2019 Available online: https://www.efsa.europa.eu/sites/default/files/consultation/callsfordata/190410-background.pdf (accessed on 16 July 2022)
Crews C. Roberts D. Lauryssen S. Kramer G. Survey of furan in foods and coffees from five European Union countries Food Addit. Contam. Part B Surveill. 2009 2 95 98 10.1080/02652030903095408 24785171
Altaki M.S. Santos F.J. Puignou L. Galceran M.T. Furan in commercial baby foods from the Spanish market: Estimation of daily intake and risk assessment Food Addit. Contam. Part A 2017 34 728 739 10.1080/19440049.2016.1278080
Scholl G. Scippo M.-L. De Pauw E. Eppe G. Saegerman C. Estimation of furan contamination across the Belgian food chain Food Addit. Contam. Part A 2012 29 172 179 10.1080/19440049.2011.635158
Glorennec P. Zmirou D. Impact Sanitaire Passé et Actuel de l’Usine d’incinération des Ordures ménagères d’Angers Cell. Inter Régionale D’épidémiologie Ouest. Rapport. 52 Pages + Annexes. Rennes Institut de veille sanitaire Saint-Maurice, Switzerland 2001
Bonvallot N. Mandin C. Mercier F. Le Bot B. Glorennec P. Health ranking of ingested semi-volatile organic compounds in house dust: An application to France Indoor Air 2010 20 458 472 10.1111/j.1600-0668.2010.00667.x 20636335
Nedellec V. Lapkoff J. Rabl A. Hiérarchisation des polluants chimiques émis par les installations de traitement des déchets ménagers en France basée sur les impacts sanitaires non cancérigènes Environ. Risques St. 2012 11 120 136
Commission E. Commission Regulation (EC) No 333/2007 of 28 March 2007 laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo (a) pyrene in foodstuffs Off. J. Eur. Union L 2007 88 29
Alsafra Z. Scholl G. Eppe G. Optimization and validation of HS-SPME-GC-MS for the determination of Furan and Alkylfurans in chocolate-based products: Impact of tempering and laser printing J. AOAC Int. 2021 104 253 259 10.1093/jaoacint/qsaa102 33216911
Decision C. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC) Off. J. Eur. Communities 2002 221 8 36
Kettlitz B. Scholz G. Theurillat V. Cselovszky J. Buck N.R. Hagan S.O. Mavromichali E. Ahrens K. Kraehenbuehl K. Scozzi G. et al. Furan and methylfurans in foods: An update on occurrence, mitigation, and risk assessment Compr. Rev. Food Sci. Food Saf. 2019 18 738 752 10.1111/1541-4337.12433 33336919
Von Tungeln L.S. Walker N.J. Olson G.R. Mendoza M.C. Felton R.P. Thorn B.T. Marques M.M. Pogribny I.P. Doerge D.R. Beland F.A. Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study Food Chem. Toxicol. 2017 99 170 181 10.1016/j.fct.2016.11.015
EFSA Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data EFSA J. 2012 10 2579
WHO Instructions for Electronic Submission of Data on Chemical Contaminants in Food and Diet World Health Organization Geneva, Switzerland 2011
Petrie A. Watson P. Statistics for Veterinary and Animal Science John Wiley & Sons Hoboken, NJ, USA 2013
Alsafra Z. Renault V. Parisi G. Scholl G. De Meulenaer B. Eppe G. Saegerman C. Consumption Habits and Brand Loyalty of Belgian Coffee Consumers Foods 2022 11 969 10.3390/foods11070969
EFSA The food classification and description system FoodEx 2 (revision 2) EFSA Supporting Publ. 2015 12 804E
World Health Organization CODEX Alimentarius: General Standard for Food Additives CODEX STAN Geneva 192-1995 World Health Organization Geneva, Switzerland 2019
Beaudelot A. Mailleux M. Les Chiffres du BIO 2019; Biowallonie asbl, Wallonie Belgium, 2020 Available online: https://www.biowallonie.com/wp-content/uploads/2021/06/Biowallonie_ChiffresBio-2020.pdf (accessed on 16 July 2022)
Batool Z. Xu D. Zhang X. Li X. Li Y. Chen Z. Li B. Li L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods Crit. Rev. Food Sci. Nutr. 2020 61 395 406 10.1080/10408398.2020.1734532 32146825
Guenther H. Hoenicke K. Biesterveld S. Gerhard-Rieben E. Lantz I. Furan in coffee: Pilot studies on formation during roasting and losses during production steps and consumer handling Food Addit. Contam. 2010 27 283 290 10.1080/19440040903317505 20155535
Rahn A. Yeretzian C. Impact of consumer behavior on furan and furan-derivative exposure during coffee consumption. A comparison between brewing methods and drinking preferences Food Chem. 2019 272 514 522 10.1016/j.foodchem.2018.08.078
Medina I. Satué-Gracia M. Frankel E.N. Static headspace gas chromatographic analyses to determine oxidation of fish muscle lipids during thermal processing J. Am. Oil Chem. Soc. 1999 76 231 236 10.1007/s11746-999-0223-z
Ma R. Liu X. Tian H. Han B. Li Y. Tang C. Zhu K. Li C. Meng Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes Aquac. Rep. 2020 17 100312 10.1016/j.aqrep.2020.100312
Vidal N.P. Manzanos M.J. Goicoechea E. Guillén M.D. Farmed and wild sea bass (Dicentrarchus labrax) volatile metabolites: A comparative study by SPME-GC/MS J. Sci. Food Agric. 2016 96 1181 1193 10.1002/jsfa.7201 25851130
Adams A. Bouckaert C. Van Lancker F. De Meulenaer B. De Kimpe N. Amino acid catalysis of 2-alkylfuran formation from lipid oxidation-derived α,β-Unsaturated Aldehydes J. Agric. Food Chem. 2011 59 11058 11062 10.1021/jf202448v
Pye C. Crews C. Furan in canned sardines and other fish Food Addit. Contam. Part B 2014 7 43 45 10.1080/19393210.2013.835874
Srivastava R. Bousquières J. Cepeda-Vázquez M. Roux S. Bonazzi C. Rega B. Kinetic study of furan and furfural generation during baking of cake models Food Chem. 2018 267 329 336 10.1016/j.foodchem.2017.06.126
Means B. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Report (Final); Office of Emergency and Remedial Response U.S. Environmental Protection Agency, Washington, 1989 Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 16 July 2022)